Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
BMC Biol ; 21(1): 234, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880625

ABSTRACT

BACKGROUND: The reuse of dredged sediments in ports and lagoons is a big issue as it should not affect the quality and the equilibrium of ecosystems. In the lagoon of Venice, sediment management is of crucial importance as sediments are often utilized to built-up structures necessary to limit erosion. However, the impact of sediment reuse on organisms inhabiting this delicate area is poorly known. The Manila clam is a filter-feeding species of high economic and ecological value for the Venice lagoon experiencing a drastic decline in the last decades. In order to define the molecular mechanisms behind sediment toxicity, we exposed clams to sediments sampled from different sites within one of the Venice lagoon navigable canals close to the industrial area. Moreover, we investigated the impacts of dredged sediments on clam's microbial communities. RESULTS: Concentrations of the trace elements and organic chemicals showed increasing concentrations from the city of Venice to sites close to the industrial area of Porto Marghera, where PCDD/Fs and PCBs concentrations were up to 120 times higher than the southern lagoon. While bioaccumulation of organic contaminants of industrial origin reflected sediments' chemical concentrations, metal bioaccumulation was not consistent with metal concentrations measured in sediments probably due to the activation of ABC transporters. At the transcriptional level, we found a persistent activation of the mTORC1 signalling pathway, which is central in the coordination of cellular responses to chemical stress. Microbiota characterization showed the over-representation of potential opportunistic pathogens following exposure to the most contaminated sediments, leading to host immune response activation. Despite the limited acquisition of new microbial species from sediments, the latter play an important role in shaping Manila clam microbial communities. CONCLUSIONS: Sediment management in the Venice lagoon will increase in the next years to maintain and create new canals as well as to allow the operation of the new mobile gates at the three Venice lagoon inlets. Our data reveal important transcriptional and microbial changes of Manila clams after exposure to sediments, therefore reuse of dredged sediments represents a potential risk for the conservation of this species and possibly for other organisms inhabiting the Venice lagoon.


Subject(s)
Bivalvia , Microbiota , Polychlorinated Dibenzodioxins , Water Pollutants, Chemical , Animals , Geologic Sediments/chemistry , Transcriptome , Dibenzofurans/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Polychlorinated Dibenzodioxins/analysis , Polychlorinated Dibenzodioxins/metabolism , Polychlorinated Dibenzodioxins/toxicity , Bivalvia/genetics , Bivalvia/chemistry , Bivalvia/metabolism
2.
Mar Pollut Bull ; 193: 115192, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37364338

ABSTRACT

Extreme events like Marine Heatwaves (MHWs) are becoming more intense, severe, and frequent, threatening benthic communities, specifically bivalves. However, the consequences of non-lethal MHWs on animals are still poorly understood. Here, we exposed the Manila clam Ruditapes philippinarum to non-lethal MHW for 30 days and provided an integrative view of its effects. Our result indicated that albeit non-lethal, MHW reduced clam's energy reserves (by reducing their hepato-somatic index), triggered antioxidant defenses (particularly in males), impaired reproduction (via the production of smaller oocytes in females), triggered dysbiosis in the digestive gland microbiota and altered animals' behaviour (by impacting their burying capacity) and filtration rate. Such effects were seen also at RNA-seq (i.e. many down-regulated genes belonged to reproduction) and metabolome level. Interestingly, negative effects were more pronounced in males than in females. Our results show that MHWs influence animal physiology at multiple levels, likely impacting its fitness and its ecosystem services.


Subject(s)
Bivalvia , Ecosystem , Animals , Female , Male , Dysbiosis , Bivalvia/physiology , Seafood , Reproduction
3.
Virol J ; 20(1): 72, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072853

ABSTRACT

BACKGROUND: The genome of the largest known animal virus, the white spot syndrome virus (WSSV) responsible for huge economic losses and loss of employment in aquaculture, suffers from inconsistent annotation nomenclature. Novel genome sequence, circular genome and variable genome length led to nomenclature inconsistencies. Since vast knowledge has already accumulated in the past two decades with inconsistent nomenclature, the insights gained on a genome could not be easily extendable to other genomes. Therefore, the present study aims to perform comparative genomics studies in WSSV on uniform nomenclature. METHODS: We have combined the standard mummer tool with custom scripts to develop missing regions finder (MRF) that documents the missing genome regions and coding sequences in virus genomes in comparison to a reference genome and in its annotation nomenclature. The procedure was implemented as web tool and in command-line interface. Using MRF, we have documented the missing coding sequences in WSSV and explored their role in virulence through application of phylogenomics, machine learning models and homologous genes. RESULTS: We have tabulated and depicted the missing genome regions, missing coding sequences and deletion hotspots in WSSV on a common annotation nomenclature and attempted to link them to virus virulence. It was observed that the ubiquitination, transcription regulation and nucleotide metabolism might be essentially required for WSSV pathogenesis; and the structural proteins, VP19, VP26 and VP28 are essential for virus assembly. Few minor structural proteins in WSSV would act as envelope glycoproteins. We have also demonstrated the advantage of MRF in providing detailed graphic/tabular output in less time and also in handling of low-complexity, repeat-rich and highly similar regions of the genomes using other virus cases. CONCLUSIONS: Pathogenic virus research benefits from tools that could directly indicate the missing genomic regions and coding sequences between isolates/strains. In virus research, the analyses performed in this study provides an advancement to find the differences between genomes and to quickly identify the important coding sequences/genomes that require early attention from researchers. To conclude, the approach implemented in MRF complements similarity-based tools in comparative genomics involving large, highly-similar, length-varying and/or inconsistently annotated viral genomes.


Subject(s)
Viruses , White spot syndrome virus 1 , Animals , DNA Viruses/genetics , Viruses/genetics , Genome, Viral , Genomics , White spot syndrome virus 1/genetics
4.
Environ Res ; 227: 115745, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36972774

ABSTRACT

The sharp decrease in the cost of RNA-sequencing and the rapid improvement in computational analysis of eco-toxicogenomic data have brought new insights into the adverse effects of chemicals on aquatic organisms. Yet, transcriptomics is generally applied qualitatively in environmental risk assessments, hampering more effective exploitation of this evidence through multidisciplinary studies. In view of this limitation, a methodology is here presented to quantitatively elaborate transcriptional data in support to environmental risk assessment. The proposed methodology makes use of results from the application of Gene Set Enrichment Analysis to recent studies investigating the response of Mytilus galloprovincialis and Ruditapes philippinarum exposed to contaminants of emerging concern. The degree of changes in gene sets and the relevance of physiological reactions are integrated in the calculation of a hazard index. The outcome is then classified according to five hazard classes (from absent to severe), providing an evaluation of whole-transcriptome effects of chemical exposure. The application to experimental and simulated datasets proved that the method can effectively discriminate different levels of altered transcriptomic responses when compared to expert judgement (Spearman correlation coefficient of 0.96). A further application to data collected in two independent studies of Salmo trutta and Xenopus tropicalis exposed to contaminants confirmed the potential extension of the methodology to other aquatic species. This methodology can serve as a proof of concept for the integration of "genomic tools" in environmental risk assessment based on multidisciplinary investigations. To this end, the proposed transcriptomic hazard index can now be incorporated into quantitative Weight of Evidence approaches and weighed, with results from other types of analysis, to elucidate the role of chemicals in adverse ecological effects.


Subject(s)
Mytilus , Transcriptome , Animals , Gene Expression Profiling/methods , Mytilus/genetics , Risk Assessment/methods
5.
Sci Total Environ ; 863: 160796, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36528093

ABSTRACT

In recent years recurrent bivalve mass mortalities considerably increased around the world, causing the collapse of natural and farmed populations. Venice Lagoon has historically represented one of the major production areas of the Manila clam Ruditapes philippinarum in Europe. However, in the last 20 years a 75 % decrease in the annual production has been experienced. While climate change and anthropogenic interventions may have played a key role in natural and farmed stocks reductions, no studies investigated at multiple levels the environmental stressors affecting farmed Manila clam to date. In this work we carried out a long-term monitoring campaign on Manila clam reared in four farming sites located at different distances from the southern Venice Lagoon inlet, integrating (meta)genomic approaches (i.e. RNA-seq; microbiota characterization), biometric measurements and chemical-physical parameters. Our study allowed to characterize the molecular mechanisms adopted by this species to cope with the different environmental conditions characterizing farming sites and to propose hypotheses to explain mortality events observed in recent years. Among the most important findings, the disruption of clam's immune response, the spread of Vibrio spp., and the up-regulation of molecular pathways involved in xenobiotic metabolism suggested major environmental stressors affecting clams farmed in sites placed close to Chioggia's inlet, where highest mortality was also observed. Overall, our study provides knowledge-based tools for managing Manila clam farming on-growing areas. In addition, the collected data is a snapshot of the time immediately before the commissioning of MoSE, a system of mobile barriers aimed at protecting Venice from high tides, and will represent a baseline for future studies on the effects of MoSE on clams farming and more in general on the ecology of the Venice Lagoon.


Subject(s)
Bivalvia , Animals , Bivalvia/metabolism , Seafood , Agriculture , Genomics
6.
Sci Total Environ ; 860: 160465, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36427727

ABSTRACT

Unravelling the adverse outcomes of pharmaceuticals mixture represents a research priority to characterize the risk for marine ecosystems. The present study investigated, for the first time, the interactions between two of the most largely detected pharmaceuticals in marine species: carbamazepine (CBZ) and valsartan (VAL), elucidating mechanisms that can modulate bioaccumulation, excretion and the onset of toxicity. Mytilus galloprovincialis were exposed to environmental levels of CBZ and VAL dosed alone or in combination: measurement of drug bioaccumulation was integrated with changes in the whole transcriptome and responsiveness of various biochemical and cellular biomarkers. Interactive and competing mechanisms between tested drugs were revealed by the much higher CBZ accumulation in mussels exposed to this compound alone, while an opposite trend was observed for VAL. A complex network of responses was observed as variations of gene expression, functional effects on neurotransmission, cell cycle, immune responses and redox homeostasis. The elaboration of results through a quantitative Weight of Evidence model summarized a greater biological reactivity of CBZ compared to VAL and antagonistic interactions between these compounds, resulting in a reduced effect of the antiepileptic when combined with valsartan. Overall, new perspectives are highlighted for a more comprehensive risk assessment of environmental mixtures of pharmaceuticals.


Subject(s)
Mytilus , Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Aquatic Organisms , Carbamazepine/toxicity , Carbamazepine/metabolism , Ecosystem , Mytilus/drug effects , Pharmaceutical Preparations/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Valsartan/metabolism , Valsartan/toxicity
7.
Genome Biol Evol ; 14(12)2022 12 07.
Article in English | MEDLINE | ID: mdl-36508337

ABSTRACT

The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves.


Subject(s)
Bivalvia , DNA, Mitochondrial , Animals , Female , Male , DNA, Mitochondrial/genetics , RNA-Seq , Bivalvia/genetics , Mitochondria/genetics , Evolution, Molecular
8.
Mar Environ Res ; 170: 105413, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34284178

ABSTRACT

Gut microbiota are important for the health, fitness and development of animal hosts, but little is known about these assemblages in wild populations of fish. Such knowledge is particularly important for juvenile life stages where nutritional intake critically determines early development, growth, and ultimately recruitment. We characterise the microbiome inhabiting the gut of young-of-the-year European plaice ('YOY plaice') on sandy beaches, their key juvenile habitat, and examine how these microbial communities vary spatially in relation to diet and nutritional condition of their plaice hosts. Body size, diet (stomach fullness and eukaryotic 18S ribosomal sequencing), nutritional condition (RNA:DNA) and gut microbiota (16S prokaryotic ribosomal sequencing) were compared in fish at two spatial scales: between beaches separated by 10s of kilometres and between sites at different depths on the same beach, separated by 10s of metres. The main microbial phyla in YOY plaice guts were Proteobacteria, Spirochaetes, Tenericutes and Verrucomicrobiae. Within the Proteobacteria there was an unusual dominance of Alphaproteobacteria. Differences in body size, diet and nutritional condition of YOY plaice between beaches were accompanied by differences in gut microbial assemblage structure. Notably, substantially reduced nutritional condition and size at one of the beaches was associated with lower stomach fullness, reduced consumption of annelids and differences in the abundance and presence of specific microbial taxa. Differences were also detected in microbial assemblages, body size, and diet between depths within the same nursery beach, although stomach fullness and nutritional condition did not vary significantly. The functional links between the environment, gut microbiota, and their hosts are potentially important mediators of the development of young fish through critical life stages. Our study indicates that these links need to be addressed at 10 km and even 10 m scales to capture the variability observed in wild populations of juvenile fish.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Diet/veterinary , Fishes , RNA, Ribosomal, 16S
9.
Article in English | MEDLINE | ID: mdl-34102295

ABSTRACT

In response to the continuous variation of environmental parameters, species must be able to adjust their physiology to overcome stressful conditions, a process known as acclimatization. Numerous laboratory studies have been conducted to understand and describe the mechanisms of acclimation to one environmental stressor (e.g. cyclic hypoxia), but currently our understanding of how acclimation to one stressor can change tolerance to a subsequent stressor is limited. Here, in two different experiments, we used the shrimp Palaemon varians to test how, following 28-days acclimation to cyclic hypoxia (mimicking a cyclic hypoxic regime currently found in its natural habitat), critical thermal maximum (CTmax) and sensitivity to copper (Cu2+) exposure (30 mgL-1) changed in comparison to shrimp acclimated to normoxic conditions and then exposed to thermal stress or Cu2+. Acclimation to cyclic hypoxia improved both CTmax (~1 °C higher than controls) and survival to acute Cu2+ exposure (~30% higher than controls) and induced significant gene expression changes (i.e. up-regulation of heat shock protein 70 - HSP70, hypoxia inducible factor - HIF, phosphoenolpyruvate carboxykinase - PEPCK, glucose 6-P transporter - G6Pt, metallothionein - Mt, and down-regulation of hemocyanin - Hem) in animals acclimated to cyclic hypoxia. Our results demonstrate how acclimation to cyclic hypoxia improved tolerance to subsequent stressors, highlighting the complexity of predicting organismal performance in variable (i.e. where multiple parameters can simultaneously change during the day) environments.


Subject(s)
Copper/metabolism , Hypoxia , Palaemonidae/physiology , Acclimatization , Animals , Copper/chemistry , Ecosystem , Gene Expression Profiling , Heat-Shock Proteins/metabolism , Ions , Models, Biological , Temperature , Up-Regulation
10.
Environ Int ; 152: 106484, 2021 07.
Article in English | MEDLINE | ID: mdl-33740673

ABSTRACT

There is growing concern for the wide use ofperfluorooctanoic acid (PFOA) because of its toxic effects on the environment and on human health. A new compound - the so called C6O4 (perfluoro ([5-methoxy-1,3-dioxolan-4-yl]oxy) acetic acid) - was recently introduced as one of the alternative to traditional PFOA, however this was done without any scientific evidence of the effects of C6O4 when dispersed into the environment. Recently, the Regional Agency for the Protection of the Environment of Veneto (Italy) detected high levels of C6O4 in groundwater and in the Po river, increasing the alarm for the potential effects of this chemical into the natural environment. The present study investigates for the first time the effects of C6O4 on the Manila clam Ruditapes philippinarum exposed to environmental realistic concentrations of C6O4 (0.1 µg/L and 1 µg/L) for 7 and 21 days. Furthermore, in order to better understand if C6O4 is a valid and less hazardous alternative to its substitute, microbial and transcriptomic alterations were also investigated in clams exposed to 1 µg/L ofPFOA. Results indicate that C6O4 may cause significant perturbations to the digestive gland microbiota, likely determining the impairment of host physiological homeostasis. Despite chemical analyses suggest a 5 times lower accumulation potential of C604 as compared to PFOA in clam soft tissues, transcriptional analyses reveal several alterations of gene expression profile. A large part of the altered pathways, including immune response, apoptosis regulation, nervous system development, lipid metabolism and cell membrane is the same in C6O4 and PFOA exposed clams. In addition, clams exposed to C6O4 showed dose-dependent responses as well as possible narcotic or neurotoxic effects and reduced activation of genes involved in xenobiotic metabolism. Overall, the present study suggests that the potential risks for marine organism following environmental contamination are not reduced by replacing PFOA with C6O4. In addition, the detection of both C6O4 and PFOA into tissues of clams inhabiting the Lagoon of Venice - where there are no point sources of either compounds - recommends a similar capacity to spread throughout the environment. These results prompt the urgent need to re-evaluate the use of C6O4 as it may represent not only an environmental hazard but also a potential risk for human health.


Subject(s)
Bivalvia , Fluorocarbons , Microbiota , Water Pollutants, Chemical , Animals , Aquatic Organisms , Bivalvia/genetics , Humans , Italy , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
11.
Genomics ; 113(1 Pt 2): 944-956, 2021 01.
Article in English | MEDLINE | ID: mdl-33127583

ABSTRACT

Infection with Aphanomyces invadans is a serious fish disease with major global impacts. Despite affecting over 160 fish species, some of the species like the common carp Cyprinus carpio are resistant to A. invadans infection. In the present study, we investigated the transcriptomes of head kidney of common carp experimentally infected with A. invadans. In time course analysis, 5288 genes were found to be differentially expressed (DEGs), of which 731 were involved in 21 immune pathways. The analysis of immune-related DEGs suggested that efficient processing and presentation of A. invadans antigens, enhanced phagocytosis, recognition of pathogen-associated molecular patterns, and increased recruitment of leukocytes to the sites of infection contribute to resistance of common carp against A. invadans. Herein, we provide a systematic understanding of the disease resistance mechanisms in common carp at molecular level as a valuable resource for developing disease management strategies for this devastating fish-pathogenic oomycete.


Subject(s)
Carps/genetics , Disease Resistance/genetics , Fish Diseases/genetics , Infections/genetics , Transcriptome , Animals , Aphanomyces/pathogenicity , Carps/immunology , Carps/microbiology , Chemokines/genetics , Chemokines/metabolism , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Infections/immunology , Phagocytosis
12.
Environ Int ; 146: 106269, 2021 01.
Article in English | MEDLINE | ID: mdl-33248345

ABSTRACT

Contaminants of emerging concern and ocean changes are key environmental stressors for marine species with possibly synergistic, but still unexplored, deleterious effects. In the present study the influence of a simulated ocean acidification scenario (pH = 7.6) was investigated on metabolism and sub-lethal effects of carbamazepine, CBZ (1 µg/L), chosen as one of the most widely diffused pharmaceuticals in marine organisms. A multidisciplinary approach was applied on mussels, M. galloprovincialis, integrating measurement of drug bioaccumulation with changes in the whole transcriptome, responsiveness of various biochemical and cellular biomarkers including immunological parameters, lipid and oxidative metabolism, onset of genotoxic effects. Chemical analyses revealed a limited influence of hypercapnia on accumulation and excretion of CBZ, while a complex network of biological responses was observed in gene expression profile and functional changes at cellular level. The modulation of gamma-aminobutyric acid (GABA) pathway suggested similarities with the Mechanism of Action known for vertebrates: immune responses, cellular homeostasis and oxidative system represented the processes targeted by combined stressors. The overall elaboration of results through a quantitative Weight of Evidence model, revealed clearly increased cellular hazard due to interactions of CBZ with acidification compared to single stressors.


Subject(s)
Mytilus , Pharmaceutical Preparations , Water Pollutants, Chemical , Animals , Biomarkers/metabolism , Carbamazepine/toxicity , Climate Change , Homeostasis , Hydrogen-Ion Concentration , Mytilus/metabolism , Oxidative Stress , Seawater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
13.
Sci Rep ; 10(1): 19531, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177569

ABSTRACT

Aphanomyces invadans, the causative agent of epizootic ulcerative syndrome, is one of the most destructive pathogens of freshwater fishes. To date, the disease has been reported from over 160 fish species in 20 countries and notably, this is the first non-salmonid disease that has resulted in major impacts globally. In particular, Indian major carps (IMCs) are highly susceptible to this disease. To increase our knowledge particularly with regards to host immune response against A. invadans infection in a susceptible host, the gene expression profile in head kidney of A. invadans-infected and control rohu, Labeo rohita was investigated using RNA sequencing. Time course analysis of RNA-Seq data revealed 5608 differentially expressed genes, involved among others in Antigen processing and presentation, Leukocyte transendothelial migration, IL-17 signaling, Chemokine signaling, C-type lectin receptor signaling and Toll-like receptor signaling pathways. In the affected pathways, a number of immune genes were found to be downregulated, suggesting an immune evasion strategy of A. invadans in establishing the infection. The information generated in this study offers first systematic mechanistic understanding of the host-pathogen interaction that might underpin the development of new management strategies for this economically devastating fish-pathogenic oomycete A. invadans.


Subject(s)
Aphanomyces/pathogenicity , Cyprinidae/microbiology , Fish Diseases/microbiology , Fish Proteins/genetics , Mycoses/veterinary , Animals , Cyprinidae/genetics , Cyprinidae/immunology , Disease Susceptibility , Fish Diseases/etiology , Fish Diseases/immunology , Fish Proteins/immunology , Head Kidney/physiology , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome
14.
Sci Rep ; 9(1): 13509, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31534145

ABSTRACT

Shrimp aquaculture is severely affected by WSSV. Despite an increasing effort to understand host/virus interaction by characterizing changes in gene expression (GE) following WSSV infection, the majority of published studies have focussed on a single time-point, providing limited insight on the development of host-pathogen interaction over the infection cycle. Using RNA-seq, we contrasted GE in gills of Litopenaeus vannamei at 1.5, 18 and 56 hours-post-infection (hpi), between WSSV-challenged and control shrimps. Time course analysis revealed 5097 differentially expressed genes: 63 DEGs were viral genes and their expression in WSSV group either peaked at 18 hpi (and decreased at 56 hpi) or increased linearly up to 56 hpi, suggesting a different role played by these genes during the course of infection. The remaining DEGs showed that WSSV altered the expression of metabolic, immune, apoptotic and cytoskeletal genes and was able to inhibit NF-κB and JAK/STAT pathways. Interestingly, GE changes were not consistent through the course of infection but were dynamic with time, suggesting the complexity of host-pathogen interaction. These data offer novel insights into the cellular functions that are affected during the course of infection and ultimately provide a valuable resource towards our understanding of the host-pathogen dynamics and its variation with time.


Subject(s)
Host-Pathogen Interactions/genetics , Penaeidae/genetics , White spot syndrome virus 1/genetics , Animals , Aquaculture/methods , Decapoda/genetics , Genes, Viral/genetics , Gills/metabolism , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Infections/genetics , Longitudinal Studies , Penaeidae/virology , Transcriptome/genetics , White spot syndrome virus 1/pathogenicity
15.
Micron ; 77: 32-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26093477

ABSTRACT

Procambarus clarkii is an invasive alien species spreading worldwide. It is therefore mandatory to find new methods to manage this species since traditional techniques are not sufficient for this purpose. The present study investigates gonad damage induced by different doses of ionising irradiation: 20, 40 and 60 Gy. Testis were analysed after 10 and 30 days by means of light, scanning and transmission electron microscopy. Control unirradiated testes present an acinar structure with a well-defined germinative cells maturation from the distal proliferative zone to the proximal stalk of the lobes whilst, in irradiated testes, induced apoptosis of germinative and accessory cells and a high level of vacuolisation inside the acini were identified, progressively increasing in accordance to Gy dosage and time after exposure. We determined the dose of 40 Gy as the best compromise: it causes an extensive damage to germinative tissues without affecting crayfish vitality, differing from 60 Gy. From an applicative point of view, this dose reduces the efforts, in terms of cost and time, for the application of SMRT.


Subject(s)
Astacoidea , Animals , Apoptosis/radiation effects , Astacoidea/radiation effects , Male , Microscopy, Electron , Radiation Dosage , Spermatogenesis , Spermatozoa/radiation effects , Spermatozoa/ultrastructure , Testis/radiation effects , Testis/ultrastructure , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...