Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38894171

ABSTRACT

Adherent cells perceive mechanical feedback from the underlying matrix and convert it into biochemical signals through a process known as mechanotransduction. The response to changes in the microenvironment relies on the cell's mechanical properties, including elasticity, which was recently identified as a biomarker for various diseases. Here, we propose the design, development, and characterization of a new system for the measurement of adherent cells' strain drop, a parameter correlated with cells' elasticity. To consider the interplay between adherent cells and the host extracellular matrix, cell stretching was combined with adhesion on substrates with different stiffnesses. The technique is based on the linear stretching of silicone chambers, high-speed image acquisition, and feedback for image centering. The system was characterized in terms of the strain homogeneity, impact of collagen coating, centering capability, and sensitivity. Subsequently, it was employed to measure the strain drop of two osteosarcoma cell lines, low-aggressive osteoblast-like SaOS-2 and high-aggressive 143B, cultured on two different substrates to recall the stiffness of the bone and lung extracellular matrices. Results demonstrated good substrate homogeneity, a negligible effect of the collagen coating, and an accurate image centering. Finally, the experimental results showed an average strain drop that was lower in the 143B cells in comparison with the SaOS-2 cells in all the tested conditions.


Subject(s)
Osteosarcoma , Osteosarcoma/pathology , Humans , Cell Line, Tumor , Extracellular Matrix/metabolism , Mechanotransduction, Cellular/physiology , Cell Adhesion/physiology , Elasticity , Stress, Mechanical , Bone Neoplasms/pathology , Collagen/chemistry , Collagen/metabolism , Osteoblasts/cytology , Osteoblasts/physiology
2.
Pharmacol Res ; 203: 107176, 2024 May.
Article in English | MEDLINE | ID: mdl-38583687

ABSTRACT

Cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, has been recently approved for epileptic syndromes often associated with Autism spectrum disorder (ASD). However, the putative efficacy and mechanism of action of CBD in patients suffering from ASD and related comorbidities remain debated, especially because of the complex pharmacology of CBD. We used pharmacological, immunohistochemical and biochemical approaches to investigate the effects and mechanisms of action of CBD in the recently validated Fmr1-Δexon 8 rat model of ASD, that is also a model of Fragile X Syndrome (FXS), the leading monogenic cause of autism. CBD rescued the cognitive deficits displayed by juvenile Fmr1-Δexon 8 animals, without inducing tolerance after repeated administration. Blockade of CA1 hippocampal GPR55 receptors prevented the beneficial effect of both CBD and the fatty acid amide hydrolase (FAAH) inhibitor URB597 in the short-term recognition memory deficits displayed by Fmr1-Δexon 8 rats. Thus, CBD may exert its beneficial effects through CA1 hippocampal GPR55 receptors. Docking analysis further confirmed that the mechanism of action of CBD might involve competition for brain fatty acid binding proteins (FABPs) that deliver anandamide and related bioactive lipids to their catabolic enzyme FAAH. These findings demonstrate that CBD reduced cognitive deficits in a rat model of FXS and provide initial mechanistic insights into its therapeutic potential in neurodevelopmental disorders.


Subject(s)
Cannabidiol , Disease Models, Animal , Fragile X Syndrome , Hippocampus , Receptors, Cannabinoid , Recognition, Psychology , Animals , Fragile X Syndrome/drug therapy , Fragile X Syndrome/metabolism , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Receptors, Cannabinoid/metabolism , Male , Recognition, Psychology/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Rats , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Memory/drug effects , Receptors, G-Protein-Coupled/metabolism , Molecular Docking Simulation
3.
J Orthop Traumatol ; 25(1): 8, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381214

ABSTRACT

BACKGROUND: The network of intermediate filament proteins underlying the inner nuclear membrane forms the nuclear lamina. Lamins have been associated with important cellular functions: DNA replication, chromatin organization, differentiation of the cell, apoptosis and in maintenance of nuclear structure. Little is known regarding the etiopathogenesis of adhesive capsulitis (AC); recently, a dysregulating fibrotic response starting from a subpopulation has been described within the fibroblast compartment, which suddenly turns on an activated phenotype. Considering the key role of A-type lamins in the regulation of cellular stability and function, our aim was to compare the lamin A/C expression between patients with AC and healthy controls. MATERIALS AND METHODS: A case-control study was performed between January 2020 and December 2021. Tissue samples excised from the rotator interval were analysed for lamin A/C expression by immunohistochemistry. Patients with AC were arbitrarily distinguished according to the severity of shoulder flexion limitation: ≥ 90° and < 90°. Controls were represented by samples obtained by normal rotator interval excised from patients submitted to shoulder surgery. The intensity of staining was graded, and an H-score was assigned. Statistical analysis was performed (Chi-square analysis; significance was set at alpha = 0.05). RESULTS: We enrolled 26 patients [12 male and 14 female, mean age (SD): 52.3 (6.08)] and 15 controls [6 male and 9 female, mean age (SD): 57.1 (5.3)]. The expression of lamin A/C was found to be significantly lower in the fibroblasts of patients with adhesive capsulitis when compared with controls (intensity of staining: p: 0.005; H-score: 0.034); no differences were found regarding the synoviocytes (p: > 0.05). Considering only patients with AC, lamin A/C intensity staining was found to be significantly higher in samples where acute inflammatory infiltrate was detected (p: 0.004). No significant changes in levels of lamin A/C expression were documented between the mild and severe adhesive capsulitis severity groups. CONCLUSIONS: Our study demonstrated that the activity of lamin A/C in maintaining nuclear structural integrity and cell viability is decreased in patients with adhesive capsulitis. The phase of the pathogenetic process (freezing and early frozen) is the key factor for cell functionality. On the contrary, the clinical severity of adhesive capsulitis plays a marginal role in nuclear stability. LEVEL OF EVIDENCE: III.


Subject(s)
Bursitis , Lamin Type A , Humans , Female , Male , Case-Control Studies , Bursitis/surgery
4.
Bioengineering (Basel) ; 10(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37627792

ABSTRACT

This paper presents a measurement procedure for analyzing the dielectric properties of cells using descriptive statistics. The study focuses on four cancer cell lines (MDA-MB-231 and MCF-7 breast cancer, SaOS-2, and 143B osteosarcoma) and DMEM culture medium, utilizing the Lorentzian fit model of the return-loss function. The measurements are performed using a circular patch resonator with a 40 mm diameter, powered by a miniVNA operating in the frequency range of 1 MHz to 3 GHz. Eight specimens are prepared for each group to ensure reliability, and the return loss is recorded ten times for each specimen. Various statistical parameters are calculated and evaluated, including the average value, standard deviation, coefficient of variation, and relative error between the average and the first values. The results demonstrate that one single acquisition highly represents the entire set of ten data points, especially for the resonant frequency, with an accuracy error lower than 0.05%. These findings have significant implications for the methodological approach to detecting cells' dielectric properties, as they substantially reduce time and preserve the specimens without compromising the accuracy of the experimental results.

5.
Cells ; 11(14)2022 07 13.
Article in English | MEDLINE | ID: mdl-35883635

ABSTRACT

The nuclear lamina is a complex meshwork of intermediate filaments (lamins) that is located beneath the inner nuclear membrane and the surrounding nucleoplasm. The lamins exert both structural and functional roles in the nucleus and, by interacting with several nuclear proteins, are involved in a wide range of nuclear and cellular activities. Due their pivotal roles in basic cellular processes, lamin gene mutations, or modulations in lamin expression, are often associated with pathological conditions, ranging from rare genetic diseases, such as laminopathies, to cancer. Although a substantial amount of literature describes the effects that are mediated by the deregulation of nuclear lamins, some apparently controversial results have been reported, which may appear to conflict with each other. In this context, we herein provide our explanation of such "controversy", which, in our opinion, derives from the tissue-specific expression of nuclear lamins and their close correlation with mechanotransduction processes, which could be very different, or even opposite, depending on the specific mechanical conditions that should not be compared (a tissue vs. another tissue, in vivo studies vs. cell cultures on glass/plastic supports, etc.). Moreover, we have stressed the relevance of considering and reproducing the "mechano-environment" in in vitro experimentation. Indeed, when primary cells that are collected from patients or donors are maintained in a culture, the mechanical signals deriving from canonical experimental procedures of cell culturing could alter the lamin expression, thereby profoundly modifying the assessed cell type, in some cases even too much, compared to the cell of origin.


Subject(s)
Lamins , Mechanotransduction, Cellular , Humans , Intermediate Filaments/metabolism , Lamins/metabolism , Mechanotransduction, Cellular/genetics , Mechanotransduction, Cellular/physiology , Nuclear Lamina/metabolism
6.
Sensors (Basel) ; 22(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35746165

ABSTRACT

The measurement of biological tissues' dielectric properties plays a crucial role in determining the state of health, and recent studies have reported microwave biosensing to be an innovative method with great potential in this field. Research has been conducted from the tissue level to the cellular level but, to date, cellular adhesion has never been considered. In addition, conventional systems for diagnosing tumor aggressiveness, such as a biopsy, are rather expensive and invasive. Here, we propose a novel microwave approach for biosensing adherent cancer cells with different malignancy degrees. A circular patch resonator was designed adjusting its structure to a standard Petri dish and a network analyzer was employed. Then, the resonator was realized and used to test two groups of different cancer cell lines, based on various tumor types and aggressiveness: low- and high-aggressive osteosarcoma cell lines (SaOS-2 and 143B, respectively), and low- and high-aggressive breast cancer cell lines (MCF-7 and MDA-MB-231, respectively). The experimental results showed that the sensitivity of the sensor was high, in particular when measuring the resonant frequency. Finally, the sensor showed a good ability to distinguish low-metastatic and high-metastatic cells, paving the way to the development of more complex measurement systems for noninvasive tissue diagnosis.


Subject(s)
Microwaves , Neoplasms , Cell Adhesion , Humans , MCF-7 Cells
7.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36613885

ABSTRACT

Excess body weight has been considered beneficial to bone health because of its anabolic effect on bone formation; however, this results in a poor quality bone structure. In this context, we evaluated the involvement of circulating extracellular vesicles in the impairment of the bone phenotype associated with obesity. Circulating extracellular vesicles were collected from the plasma of participants with normal weight, as well as overweight and obese participants, quantified by flow cytometry analysis and used to treat mesenchymal stromal cells and osteoblasts to assess their effect on cell differentiation and activity. Children with obesity had the highest amount of circulating extracellular vesicles compared to controls. The treatment of mesenchymal stromal cells with extracellular vesicles from obese participants led to an adipogenic differentiation in comparison to vesicles from controls. Mature osteoblasts treated with extracellular vesicles from obese participants showed a reduction in differentiation markers in comparison to controls. Children with obesity who regularly performed physical exercise had a lower circulating extracellular vesicle amount in comparison to those with a sedentary lifestyle. This pilot study demonstrates how the high amount of circulating extracellular vesicles in children with obesity affects the bone phenotype and that physical activity can partially rescue this phenotype.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Pediatric Obesity , Humans , Osteogenesis , Pilot Projects , Cell Differentiation , Adipogenesis , Osteoblasts , Cells, Cultured
8.
Front Cell Dev Biol ; 9: 789674, 2021.
Article in English | MEDLINE | ID: mdl-34950663

ABSTRACT

The bone microenvironment homeostasis is guaranteed by the balanced and fine regulated bone matrix remodeling process. This equilibrium can be disrupted by cancer cells developed in the bone (primary bone cancers) or deriving from other tissues (bone metastatic lesions), through a mechanism by which they interfere with bone cells activities and alter the microenvironment both biochemically and mechanically. Among the factors secreted by cancer cells and by cancer-conditioned bone cells, extracellular vesicles (EVs) are described to exert pivotal roles in the establishment and the progression of bone cancers, by conveying tumorigenic signals targeting and transforming normal cells. Doing this, EVs are also responsible in modulating the production of proteins involved in regulating matrix stiffness and/or mechanotransduction process, thereby altering the bone mechanoenvironment. In turn, bone and cancer cells respond to deregulated matrix stiffness by modifying EV production and content, fueling the vicious cycle established in tumors. Here, we summarized the relationship between EVs and the mechanoenvironment during tumoral progression, with the final aim to provide some innovative perspectives in counteracting bone cancers.

9.
Front Cell Dev Biol ; 9: 712377, 2021.
Article in English | MEDLINE | ID: mdl-34595168

ABSTRACT

Besides its structural properties in the nucleoskeleton, Lamin A/C is a mechanosensor protein involved in perceiving the elasticity of the extracellular matrix. In this study we provide evidence about Lamin A/C-mediated regulation of osteosarcoma cell adhesion and spreading on substrates with tissue-specific elasticities. Our working hypothesis is based on the observation that low-aggressive and bone-resident SaOS-2 osteosarcoma cells express high level of Lamin A/C in comparison to highly metastatic, preferentially to the lung, osteosarcoma 143B cells, thereby suggesting a role for Lamin A/C in tumor cell tropism. Specifically, LMNA gene over-expression in 143B cells induced a reduction in tumor cell aggressiveness in comparison to parental cells, with decreased proliferation rate and reduced migration capability. Furthermore, LMNA reintegration into 143B cells changed the adhesion properties of tumor cells, from a preferential tropism toward the 1.5 kPa PDMS substrate (resembling normal lung parenchyma) to the 28 kPa (resembling pre-mineralized bone osteoid matrix). Our study suggests that Lamin A/C expression could be involved in the organ tropism of tumor cells, thereby providing a rationale for further studies focused on the definition of cancer mechanism of metastatization.

10.
J Orthop Surg Res ; 16(1): 413, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193225

ABSTRACT

BACKGROUND: The network of intermediate filament proteins underlying the inner nuclear membrane forms the nuclear lamin. A- and B-type lamins are the major components of the nuclear lamina. Lamins function in many nuclear activities. The role of lamin A and transcription factors (NF-kB) as anti-apoptotic is well documented. Recently, lamin A has also been considered as a mechanosensor protein that is able to maintain nuclear integrity from mechanical insults. We aimed to verify how lamin A expression varies in healthy cuff cells and in those with different-sized tears where various mechanical stresses are present. METHODS: Forty-three patients with rotator cuff tear (RCT) [23M-20F, mean age (SD): 63.5 (6.1)] were enrolled. Tissue samples excised from the most medial point of tear margins were analyzed for lamin A expression by immunohistochemistry. Controls were represented by samples obtained by normal supraspinatus tendons excised from patients submitted to reverse shoulder prosthesis implant [8M-7F, mean age (SD): 67.9 (7.1)]. The intensity of staining was graded, and an H-score was assigned. Statistical analysis was performed. RESULTS: Our study revealed a moderate intensity of lamin A in the healthy cuff tendons, a higher expression of this protein in the small tears, and a significant decrease of lamin A with increasing tear size (p < 0.0001). CONCLUSIONS: Our study emphasizes the importance of early repair of small RCTs since nuclear stability is maintained, and the cellular function is protected by lamin A overexpression. High re-tear of massive cuff repair could be due to cellular apoptosis and nuclear modifications induced by lamin A lack. LEVEL OF EVIDENCE: III.


Subject(s)
Lamin Type A/metabolism , Rotator Cuff Injuries/metabolism , Rotator Cuff/cytology , Tenocytes/metabolism , Aged , Apoptosis , Case-Control Studies , Female , Humans , Immunohistochemistry , Male , Middle Aged , Rotator Cuff Injuries/pathology
11.
Int J Mol Sci ; 21(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33322030

ABSTRACT

Mechanotransduction is a physiological process in which external mechanical stimulations are perceived, interpreted, and translated by cells into biochemical signals. Mechanical stimulations exerted by extracellular matrix stiffness and cell-cell contacts are continuously applied to living cells, thus representing a key pivotal trigger for cell homeostasis, survival, and function, as well as an essential factor for proper organ development and metabolism. Indeed, a deregulation of the mechanotransduction process consequent to gene mutations or altered functions of proteins involved in perceiving cellular and extracellular mechanics can lead to a broad range of diseases, from muscular dystrophies and cardiomyopathies to cancer development and metastatization. Here, we recapitulate the involvement of focal adhesion kinase (FAK) in the cellular conditions deriving from altered mechanotransduction processes.


Subject(s)
Bone Diseases/metabolism , Cardiomyopathies/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mechanotransduction, Cellular , Animals , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans
13.
J Cell Commun Signal ; 14(4): 417-426, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32583269

ABSTRACT

Cancer cells are able to release high amounts of extracellular vesicles, thereby conditioning the normal cells in the surrounding tissue and/or in distant target organs. In the context of bone cancers, previous studies suggested that osteosarcoma cancer cells produce transforming extracellular vesicles able to induce a tumour-like phenotype in normal recipient cells. Indeed, phosphoinositide-specific phospholipase C (PI-PLC) enzymes are differentially expressed in osteosarcoma cell lines with increasing aggressiveness, thus providing helpful insights to better define their role and functions in this bone tumour. By confocal microscopy analysis, we demonstrated that osteosarcoma-derived extracellular vesicles convey all the assessed PI-PLC isoforms, and that they localize into cell membrane bubble-like structures, resembling extracellular vesicles about to be released, as conveyed and/or membrane protein. Cytofluorimetric analysis confirmed the presence of PI-PLC isoforms in the extracellular vesicles collected from conditioned media of osteosarcoma cells. These findings suggest the feasibility to use circulating extracellular vesicles as biomarkers of osteosarcoma progression and/or the monitoring of this distressing disease.

14.
Int J Mol Sci ; 21(8)2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32290470

ABSTRACT

Src is the representative member of the Src-family kinases (SFKs), a group of tyrosine kinases involved in several cellular processes. Its main function has been for long confined to the plasma membrane/cytoplasm compartment, being a myristoylated protein anchored to the cell membrane and functioning downstream to receptors, most of them lacking intrinsic kinase activity. In the last decades, new roles for some SFKs have been described in the nuclear compartment, suggesting that these proteins can also be involved in directly regulating gene transcription or nucleoskeleton architecture. In this review, we focused on those nuclear functions specifically attributable to Src, by considering its function as both tyrosine kinase and adapting molecule. In particular, we addressed the Src involvement in physiological as well as in pathological conditions, especially in tumors.


Subject(s)
Cell Nucleus/metabolism , src-Family Kinases/metabolism , Animals , Humans , Intracellular Space/metabolism , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Tyrosine/metabolism , src-Family Kinases/chemistry , src-Family Kinases/genetics
15.
Cancers (Basel) ; 12(2)2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32069980

ABSTRACT

The nuclear lamina is essential for the maintenance of nuclear shape and mechanics. Mutations in lamin genes have been identified in a heterogeneous spectrum of human diseases known as "laminopathies" associated with nuclear envelope defects and deregulation of cellular functions. Interestingly, osteosarcoma is the only neoplasm described in the literature in association with laminopathies. This study aims characterized the expression of A-type and B-type lamins and emerin in osteosarcoma, revealing a higher percentage of dysmorphic nuclei in osteosarcoma cells in comparison to normal osteoblasts and all the hallmarks of laminopathic features. Both lamins and emerin were differentially expressed in osteosarcoma cell lines in comparison to normal osteoblasts and correlated with tumor aggressiveness. We analysed lamin A/C expression in a tissue-microarray including osteosarcoma samples with different prognosis, finding a positive correlation between lamin A/C expression and the overall survival of osteosarcoma patients. An inefficient MKL1 nuclear shuttling and actin depolymerization, as well as a reduced expression of pRb and a decreased YAP nuclear content were observed in A-type lamin deficient 143B cells. In conclusion, we described for the first time laminopathic nuclear phenotypes in osteosarcoma cells, providing evidence for an altered lamins and emerin expression and a deregulated nucleoskeleton architecture of this tumor.

16.
Sensors (Basel) ; 19(23)2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31766596

ABSTRACT

In this paper, the characterization of the main techniques and transducers employed to measure local and global strains induced by uniaxial loading of murine tibiae is presented. Micro strain gauges and digital image correlation (DIC) were tested to measure local strains, while a moving coil motor-based length transducer was employed to measure relative global shortening. Local strain is the crucial parameter to be measured when dealing with bone cell mechanotransduction, so we characterized these techniques in the experimental conditions known to activate cell mechanosensing in vivo. The experimental tests were performed using tibia samples excised from twenty-two C57BL/6 mice. To evaluate measurement repeatability we computed the standard deviation of ten repetitive compressions to the mean value. This value was lower than 3% for micro strain gauges, and in the range of 7%-10% for DIC and the length transducer. The coefficient of variation, i.e., the standard deviation to the mean value, was about 35% for strain gauges and the length transducer, and about 40% for DIC. These results provided a comprehensive characterization of three methodologies for local and global bone strain measurement, suggesting a possible field of application on the basis of their advantages and limitations.


Subject(s)
Tibia/physiology , Animals , Biomechanical Phenomena/physiology , Mechanotransduction, Cellular/physiology , Mice , Mice, Inbred C57BL , Stress, Mechanical , Transducers , Weight-Bearing/physiology
17.
J Cell Physiol ; 233(8): 6158-6172, 2018 08.
Article in English | MEDLINE | ID: mdl-29323709

ABSTRACT

Osteosarcoma is the most common primary bone cancer and the most frequent cause of bone cancer-related deaths in children and adolescents. Osteosarcoma cells are able to establish a crosstalk with resident bone cells leading to the formation of a deleterious vicious cycle. We hypothesized that osteosarcoma cells can release, in the bone microenvironment, transforming Extracellular Vesicles (EVs) involved in regulating bone cell proliferation and differentiation, thereby promoting tumor growth. We assessed EV production by three osteosarcoma cell lines with increasing aggressiveness in order to investigate their roles in the communication between osteosarcoma cells and normal recipient cells. Osteosarcoma-derived EVs were used to treat the murine fibroblast cell line NIH3T3 and to study the induction of tumor-like phenotypes. Our results showed that osteosarcoma cell lines are able to produce EVs that fuse to recipient cells, with a very high uptake efficiency. The treatment of recipient NIH3T3 with osteosarcoma-derived EVs induced substantial biological and functional effects, as an enhanced proliferation and survival capability under starved conditions, high levels of activated survival pathways, an increased migration, adhesion, and 3D sphere formation and the acquired capability to grow in an anchorage-independent manner. Moreover, in murine NIH3T3 we found human mRNAs of TNF-α, IL-6, and TGF-ß, as well as a de novo expression of murine MMP-9 and TNF-α following the treatment of human osteosarcoma-derived EVs.


Subject(s)
Bone Neoplasms/pathology , Extracellular Vesicles/pathology , Osteosarcoma/pathology , Animals , Bone Neoplasms/metabolism , Cell Adhesion/physiology , Cell Differentiation/physiology , Cell Line , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation, Neoplastic/physiology , Humans , Mice , NIH 3T3 Cells , Osteosarcoma/metabolism , Phenotype , Tumor Microenvironment/physiology
18.
J Cell Physiol ; 233(2): 1658-1670, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28671269

ABSTRACT

Osteosarcoma is the most common malignant bone tumor in children and young adults. The identification of proteins which exhibit different subcellular localization in low- versus high-risk osteosarcoma can be instrumental to obtain prognostic information and to develop innovative therapeutic strategies. Beside the well-characterized membrane and cytoplasmic localization of Src protein, this study evaluated the prognostic relevance of its so-far unknown nuclear compartmentalization. We analyzed the subcellular distribution of total and activated (pY418) Src in a tissue microarray including 60 osteosarcoma samples. Immunohistochemical analyses revealed a variable pattern of Src expression and localization, ranging from negative to high-stained nuclei combined with a substantial cytoplasmic staining for total and activated forms. The analysis of Kaplan-Meier survival curves in relationship to the diverse permutations of cytoplasmic and nuclear staining suggested a correlation between Src subcellular localization and the overall survival (OS) of osteosarcoma patients. In order to explain this different subcellular localization, normal osteoblasts and three osteosarcoma cell lines were used to investigate the molecular mechanism. Once confirmed a variable Src localization also in these cell lines, we demonstrated a correlation between the N-myristoyltransferase enzymes expression and activity and the Src nuclear content. In conclusion, these results described a so-far unknown Src nuclear localization in osteosarcoma cells, suggesting that the combined detection of nuclear and cytoplasmic Src levels can be used as a prognostic marker for osteosarcoma patient survival. A correlation between the N-myristoyltransferase enzymes and the Src subcellular localization was described as well.


Subject(s)
Biomarkers, Tumor/metabolism , Bone Neoplasms/enzymology , Cell Nucleus/enzymology , Osteosarcoma/enzymology , src-Family Kinases/metabolism , Acyltransferases/metabolism , Adolescent , Adult , Bone Neoplasms/mortality , Bone Neoplasms/pathology , Bone Neoplasms/therapy , Cell Line, Tumor , Child , Enzyme Activation , Female , Humans , Kaplan-Meier Estimate , Male , Osteosarcoma/mortality , Osteosarcoma/pathology , Osteosarcoma/therapy , Prognosis , Protein Processing, Post-Translational , Time Factors , Tissue Array Analysis , Young Adult
19.
J Bone Miner Res ; 28(9): 1912-24, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23559035

ABSTRACT

(hbd) PRELP is a peptide corresponding to the N-terminal heparin binding domain of the matrix protein proline/arginine-rich end leucine-rich repeat protein (PRELP). (hbd) PRELP inhibits osteoclastogenesis entering pre-fusion osteoclasts through a chondroitin sulfate- and annexin 2-dependent mechanism and reducing the nuclear factor-κB transcription factor activity. In this work, we hypothesized that (hbd) PRELP could have a pharmacological relevance, counteracting bone loss in a variety of in vivo models of bone diseases induced by exacerbated osteoclast activity. In healthy mice, we demonstrated that the peptide targeted the bone and increased trabecular bone mass over basal level. In mice treated with retinoic acid to induce an acute increase of osteoclast formation, the peptide consistently antagonized osteoclastogenesis and prevented the increase of the serum levels of the osteoclast-specific marker tartrate-resistant acid phosphatase. In ovariectomized mice, in which osteoclast activity was chronically enhanced by estrogen deficiency, (hbd) PRELP counteracted exacerbated osteoclast activity and bone loss. In mice carrying osteolytic bone metastases, in which osteoclastogenesis and bone resorption were enhanced by tumor cell-derived factors, (hbd) PRELP reduced the incidence of osteolytic lesions, both preventively and curatively, with mechanisms involving impaired tumor cell homing to bone and tumor growth in the bone microenvironment. Interestingly, in tumor-bearing mice, (hbd) PRELP also inhibited breast tumor growth in orthotopic sites and development of metastatic disease in visceral organs, reducing cachexia and improving survival especially when administered preventively. (hbd) PRELP was retained in the tumor tissue and appeared to affect tumor growth by interacting with the microenvironment rather than by directly affecting the tumor cells. Because safety studies and high-dose treatments revealed no adverse effects, (hbd) PRELP could be employed as a novel biological agent to combat experimentally induced bone loss and breast cancer metastases, with a potential translational impact.


Subject(s)
Bone Resorption/drug therapy , Bone Resorption/pathology , Extracellular Matrix Proteins/pharmacology , Extracellular Matrix Proteins/therapeutic use , Glycoproteins/pharmacology , Glycoproteins/therapeutic use , Osteoclasts/pathology , Animals , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Bone Resorption/complications , Bone and Bones/drug effects , Bone and Bones/metabolism , Bone and Bones/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Matrix Proteins/adverse effects , Extracellular Matrix Proteins/chemistry , Female , Glycoproteins/adverse effects , Glycoproteins/chemistry , Humans , Mammary Neoplasms, Experimental/complications , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoporosis/complications , Osteoporosis/drug therapy , Osteoporosis/pathology , Protein Binding/drug effects , Structure-Activity Relationship
20.
Nat Commun ; 3: 630, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22252554

ABSTRACT

Interleukin-6 (IL-6) and c-Src impair osteoblast maturation in vitro and in vivo. Given the similar effects of these factors, they are likely to establish a functional loop to maintain osteoblasts in a less mature status. Here we describe a pathway whereby c-Src stimulates IL-6 expression through the STAT3 factor, which, in response to IL-6 induces insulin-like growth factor 5 (IGFBP5), a c-Src activating factor that amplifies this loop only in immature osteoblasts. In contrast, in mature osteoblasts, IGFBP5 is enhanced by Runx2, but is no longer able to stimulate c-Src activation, as this tyrosine kinase at this stage is downregulated. We find that the IGFBP5 produced by osteoblasts stimulates osteoclastogenesis and bone resorption, acting as an osteoblast-osteoclast coupling factor. Finally, we demonstrate that the integrated actions of c-Src, IL-6 and IGFBP5 also have a role in vivo. We conclude that this pathway is relevant for bone metabolism, both in physiological and in pathological conditions.


Subject(s)
Gene Expression Regulation , Insulin-Like Growth Factor Binding Protein 5/metabolism , Interleukin-6/metabolism , Osteoblasts/cytology , Protein-Tyrosine Kinases/metabolism , Animals , Bone and Bones/metabolism , CSK Tyrosine-Protein Kinase , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/metabolism , Culture Media, Conditioned/pharmacology , Humans , Mice , Models, Biological , Osteoblasts/metabolism , RNA Interference , STAT3 Transcription Factor/metabolism , Time Factors , src-Family Kinases
SELECTION OF CITATIONS
SEARCH DETAIL