Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(18): 8142-8154, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38640445

ABSTRACT

The covalent bonding framework of crystalline single-bonded cubic AsN, recently synthesized under high pressure and high temperature conditions in a laser-heated diamond anvil cell, is here studied by means of density functional theory calculations and compared to single crystal X-ray diffraction data. The precise localization of the nonbonding electron lone pairs and the determination of their distances and orientations are related to the presence of characteristic structural motifs and space regions of the unit cell dominated by repulsive electronic interactions, with the relative orientation of the electron lone pairs playing a key role in minimizing the energy of the structure. We find that the vibrational modes associated with the expression of the lone pairs are strongly localized, an observation that may have implications for the thermal conductivity of the compound. The results indicate the thermodynamic stability of the experimentally observed structure of AsN above ∼17 GPa, provide a detailed insight into the nature of the chemical bonding network underlying the formation of this compound, and open new perspectives to the design and high pressure synthesis of new pnictogen-based advanced materials for potential applications of energetic and technological relevance.

2.
Nanoscale ; 16(18): 9096-9107, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38646807

ABSTRACT

Hexagonal boron nitride (hBN) and black phosphorus (bP) are crystalline materials that can be seen as ordered stackings of two-dimensional layers, which lead to outstanding anisotropic physical properties. Knowledge of the thermal equations of state of hBN and bP is of great interest in the field of 2D materials for a better understanding of their anisotropic thermo-mechanical properties and exfoliation mechanism towards the preparation of important single-layer materials like hexagonal boron nitride nanosheets and phosphorene. Despite several theoretical and experimental studies, important uncertainties remain in the determination of the thermoelastic parameters of hBN and bP. Here, we report accurate thermal expansion and compressibility measurements along the individual crystallographic axes, using in situ high-temperature and high-pressure high-resolution synchrotron X-ray diffraction. In particular, we have quantitatively determined the subtle variations of the in-plane and volumetric thermal expansion coefficients and compressibility parameters by subjecting these materials to hydrostatic conditions and by collecting a large number of data points in small pressure and temperature increments. In addition, based on the anisotropic behavior of bP, we propose the use of this material as a sensor for the simultaneous determination of pressure and temperature in the range of 0-5 GPa and 298-1700 K, respectively.

3.
Angew Chem Int Ed Engl ; 63(11): e202319278, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38156778

ABSTRACT

A chemical reaction between Sb and N2 was induced under high-pressure (32-35 GPa) and high-temperature (1600-2200 K) conditions, generated by a laser heated diamond anvil cell. The reaction product was identified by single crystal synchrotron X-ray diffraction at 35 GPa and room temperature as crystalline antimony nitride with Sb3 N5 stoichiometry and structure belonging to orthorhombic space group Cmc21 . Only Sb-N bonds are present in the covalent bonding framework, with two types of Sb atoms respectively forming SbN6 distorted octahedra and trigonal prisms and three types of N atoms forming NSb4 distorted tetrahedra and NSb3 trigonal pyramids. Taking into account two longer Sb-N distances, the SbN6 trigonal prisms can be depicted as SbN8 square antiprisms and the NSb3 trigonal pyramids as NSb4 distorted tetrahedra. The Sb3 N5 structure can be described as an ordered stacking in the bc plane of bi- layers of SbN6 octahedra alternated to monolayers of SbN6 trigonal prisms (SbN8 square antiprisms). The discovery of Sb3 N5 finally represents the long sought-after experimental evidence for Sb to form a crystalline nitride, providing new insights about fundamental aspects of pnictogens chemistry and opening new perspectives for the high-pressure chemistry of pnictogen nitrides and the synthesis of an entire class of new materials.

4.
ACS Catal ; 13(8): 5236-5244, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37123593

ABSTRACT

Well-defined, bench stable Mn(I) non-pincer-type complexes were tested as earth-abundant transition metal catalysts for the selective reduction of CO2 to boryl-protected MeOH in the presence of pinacolborane (HBpin). Essentially, quantitative yields were obtained under mild reaction conditions (1 bar CO2, 60 °C), without the need of any base or additives, in the presence of the alkylcarbonyl Mn(I) bis(phosphine) complexes fac-[Mn(CH2CH2CH3)(dippe)(CO)3] [Mn1, dippe = 1,2-bis(diisopropylphosphino)ethane] and [Mn(dippe)(CO)2{(µ-H)2(Bpin)}] (Mn4), that is obtained by reaction of the bench-stable precatalyst Mn1 with HBpin via elimination of butanal. Preliminary mechanistic details were obtained by a combination of NMR experiments and monitoring of the catalytic reactions.

5.
Chempluschem ; 88(2): e202200457, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36799270

ABSTRACT

Layered black phosphorus (BP) is endowed with peculiar chemico-physical properties that make it a highly promising candidate in the field of electronics. Nevertheless, as other 2D materials with atomic scale thickness, it suffers from easy degradation under ambient conditions. Herein, it is shown that the functionalization of BP with preformed and in situ grown Ni NPs, affects the electronic properties of the material. In particular, Ni functionalization performed in situ leads to a narrowing of the average BP band gap from 1.15 to 0.95 eV and to a marked shift in the conduction band maximum from -0.33 V to -0.07 V, which, in turn, improve the ambient stability. Structural studies carried out by XAS can well distinguish the two nanohybrids and reveal that once Ni NPs are grown on BP nanosheets, a Ni-P coordinative bond is formed, featuring a short Ni-P distance of 2.27 Å, which is not observed when preformed Ni NPs are immobilized on BP. Comparing the XANES and EXAFS spectra of fresh and aged samples of both nanohybrids, suggests that the interaction between Ni and P atoms results in a stabilization effect exerted via a dual electronic and redox mechanism, that infers a much superior ambient stability to BP, even if the surface functionalization is far to achieve a full coverage.

6.
Inorg Chem ; 61(31): 12165-12180, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35881069

ABSTRACT

The direct chemical reactivity between phosphorus and nitrogen was induced under high-pressure and high-temperature conditions (9.1 GPa and 2000-2500 K), generated by a laser-heated diamond anvil cell and studied by synchrotron X-ray diffraction, Raman spectroscopy, and DFT calculations. α-P3N5 and γ-P3N5 were identified as reaction products. The structural parameters and vibrational frequencies of γ-P3N5 were characterized as a function of pressure during room-temperature compression and decompression to ambient conditions, determining the equation of state of the material up to 32.6 GPa and providing insight about the lattice dynamics of the unit cell during compression, which essentially proceeds through the rotation of the PN5 square pyramids and the distortion of the PN4 tetrahedra. Although the identification of α-P3N5 demonstrates for the first time the direct synthesis of this compound from the elements, its detection in the outer regions of the laser-heated area suggests α-P3N5 as an intermediate step in the progressive nitridation of phosphorus toward the formation of γ-P3N5 with increasing coordination number of P by N from 4 to 5. No evidence of a higher-pressure phase transition was observed, excluding the existence of predicted structures containing octahedrally hexacoordinated P atoms in the investigated pressure range.

7.
ACS Nano ; 16(3): 3538-3545, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35099941

ABSTRACT

Setting up strong Josephson coupling in van der Waals materials in close proximity to superconductors offers several opportunities both to inspect fundamental physics and to develop cryogenic quantum technologies. Here we show evidence of Josephson coupling in a planar few-layer black phosphorus junction. The planar geometry allows us to probe the junction behavior by means of external gates, at different carrier concentrations. Clear signatures of Josephson coupling are demonstrated by measuring supercurrent flow through the junction at milli-Kelvin temperatures. Manifestation of a Fraunhofer pattern with a transverse magnetic field is also reported, confirming the Josephson coupling. These findings represent evidence of proximity Josephson coupling in a planar junction based on a van der Waals material beyond graphene and will expedite further studies, exploiting the peculiar properties of exfoliated black phosphorus thin flakes.

8.
Angew Chem Int Ed Engl ; 61(6): e202114191, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34797602

ABSTRACT

Chemical reactivity between As and N2 , leading to the synthesis of crystalline arsenic nitride, is here reported under high pressure and high temperature conditions generated by laser heating in a diamond anvil cell. Single-crystal synchrotron X-ray diffraction at different pressures between 30 and 40 GPa provides evidence for the synthesis of a covalent compound of AsN stoichiometry, crystallizing in a cubic P21 3 space group, in which each of the two elements is single-bonded to three atoms of the other and hosts an electron lone pair, in a tetrahedral anisotropic coordination. The identification of characteristic structural motifs highlights the key role played by the directional repulsive interactions between non-bonding electron lone pairs in the formation of the AsN structure. Additional data indicate the existence of AsN at room temperature from 9.8 up to 50 GPa. Implications concern fundamental aspects of pnictogens chemistry and the synthesis of innovative advanced materials.

9.
ACS Appl Mater Interfaces ; 13(37): 44711-44722, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34506713

ABSTRACT

In the rapidly emerging field of layered two-dimensional functional materials, black phosphorus, the P-counterpart of graphene, is a potential candidate for various applications, e.g., nanoscale optoelectronics, rechargeable ion batteries, electrocatalysts, thermoelectrics, solar cells, and sensors. Black phosphorus has shown superior chemical sensing performance; in particular, it is selective for the detection of NO2, an environmental toxic gas, for which black phosphorus has highlighted high sensitivity at a ppb level. In this work, by applying a multiscale characterization approach, we demonstrated a stability and functionality improvement of nickel-decorated black phosphorus films for gas sensing prepared by a simple, reproducible, and affordable deposition technique. Furthermore, we studied the electrical behavior of these films once implemented as functional layers in gas sensors by exposing them to different gaseous compounds and under different relative humidity conditions. Finally, the influence on sensing performance of nickel nanoparticle dimensions and concentration correlated to the decoration technique and film thickness was investigated.

10.
Dalton Trans ; 50(33): 11610-11618, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34355729

ABSTRACT

Heterostructures of single- and few-layer black phosphorus (2D bP) functionalized with gold nanoparticles (Au NPs) have been recently reported in the literature, exploiting their intriguing properties and biocompatibility for catalytic, therapeutical and diagnostic applications. However, a deeper insight on the structural and electronic properties at the interface of the 2D bP/Au NP heterostructure is still lacking. In this work, 2D bP is functionalized with Au nanoparticles (NPs) through in situ deposition-precipitation heterogeneous reaction. The smallest realized Au NPs have a diameter around 10 nm as revealed by atomic-force and scanning electron microscopy, and are partially positively charged as revealed by X-ray Photoelectron Spectroscopy (XPS). XPS, UV-vis and Raman spectroscopy, supported by density functional theory (DFT) calculations, confirmed that while the structural and electronic properties of 2D bP are overall preserved, a soft-pairing between P atoms at the surface of 2D bP and Au atoms at the surface of Au NPs occurs, leading to a partial charge transfer at the 2D bP/Au interface, with a positive charge being localized on the Au atoms directly bonded to 2D bP. DFT calculations also predicted a band gap lowering, by 0.8 eV, for phosphorene functionalized with a tetranuclear Au cluster. Larger effects are expected as the Au cluster nuclearity (and coverage) increases.

11.
Nanomaterials (Basel) ; 11(8)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34443827

ABSTRACT

Exfoliated black phosphorus (bP) embedded into a polymer is preserved from oxidation, is stable to air, light, and humidity, and can be further processed into devices without degrading its properties. Most of the examples of exfoliated bP/polymer composites involve a single polymer matrix. Herein, we report the preparation of biphasic polystyrene/poly(methyl methacrylate) (50/50 wt.%) composites containing few-layer black phosphorus (fl-bP) (0.6-1 wt.%) produced by sonicated-assisted liquid-phase exfoliation. Micro-Raman spectroscopy confirmed the integrity of fl-bP, while scanning electron microscopy evidenced the influence of fl-bP into the coalescence of polymeric phases. Furthermore, the topography of thin films analyzed by atomic force microscopy confirmed the effect of fl-bP into the PS dewetting, and the selective PS etching of thin films revealed the presence of fl-bP flakes. Finally, a block copolymer/fl-bP composite (1.2 wt.%) was prepared via in situ reversible addition-fragmentation chain transfer (RAFT) polymerization by sonication-assisted exfoliation of bP into styrene. For this sample, 31P solid-state NMR and Raman spectroscopy confirmed an excellent preservation of bP structure.

12.
Chem Sci ; 12(10): 3682-3692, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-34163642

ABSTRACT

The reaction between basic [(PCP)Pd(H)] (PCP = 2,6-(CH2P(t-C4H9)2)2C6H4) and acidic [LWH(CO)3] (L = Cp (1a), Tp (1b); Cp = η5-cyclopentadienyl, Tp = κ3-hydridotris(pyrazolyl)borate) leads to the formation of bimolecular complexes [LW(CO)2(µ-CO)⋯Pd(PCP)] (4a, 4b), which catalyze amine-borane (Me2NHBH3, t BuNH2BH3) dehydrogenation. The combination of variable-temperature (1H, 31P{1H}, 11B NMR and IR) spectroscopies and computational (ωB97XD/def2-TZVP) studies reveal the formation of an η1-borane complex [(PCP)Pd(Me2NHBH3)]+[LW(CO3)]- (5) in the first step, where a BH bond strongly binds palladium and an amine group is hydrogen-bonded to tungsten. The subsequent intracomplex proton transfer is the rate-determining step, followed by an almost barrierless hydride transfer. Bimetallic species 4 are easily regenerated through hydrogen evolution in the reaction between two hydrides.

13.
J Am Chem Soc ; 143(27): 10088-10098, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34185506

ABSTRACT

The chemical functionalization of 2D exfoliated black phosphorus (2D BP) continues to attract great interest, although a satisfactory structural characterization of the functionalized material has seldom been achieved. Herein, we provide the first complete structural characterization of 2D BP functionalized with rare discrete Pd2 units, obtained through a mild decomposition of the organometallic dimeric precursor [Pd(η3-C3H5)Cl]2. A multitechnique approach, including HAADF-STEM, solid-state NMR, XPS, and XAS, was used to study in detail the morphology of the palladated nanosheets (Pd2/BP) and to unravel the coordination of Pd2 units to phosphorus atoms of 2D BP. In particular, XAS, backed up by DFT modeling, revealed the existence of unprecedented interlayer Pd-Pd units, sandwiched between stacked BP layers. The preliminary application of Pd2/BP as a catalyst for the hydrogen evolution reaction (HER) in acidic medium highlighted an activity increase due to the presence of Pd2 units.

14.
Organometallics ; 40(9): 1213-1220, 2021 May 10.
Article in English | MEDLINE | ID: mdl-34054185

ABSTRACT

The catalytic reduction of carbon dioxide is a process of growing interest for the use of this simple and abundant molecule as a renewable building block in C1-chemical synthesis and for hydrogen storage. The well-defined, bench-stable alkylcarbonyl Mn(I) bis(phosphine) complex fac-[Mn(CH2CH2CH3)(dippe)(CO)3] [dippe = 1,2-bis(diisopropylphosphino)ethane] was tested as an efficient and selective non-precious-metal precatalyst for the hydrogenation of CO2 to formate under mild conditions (75 bar total pressure, 80 °C), in the presence of a Lewis acid co-catalyst (LiOTf) and a base (DBU). Mechanistic insight into the catalytic reaction is provided by means of density functional theory (DFT) calculations.

15.
Sci Rep ; 11(1): 5856, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712665

ABSTRACT

Nowadays, prostate cancer is the most widespread tumour in worldwide male population. Actually, brachytherapy is the most advanced radiotherapy strategy for the local treatment of prostate cancer. It consists in the placing of radioactive sources closed to the tumour side thus killing cancer cells. However, brachytherapy causes the same adverse effects of external-beam radiotherapy. Therefore, alternative treatment approaches are required for enhancing radiotherapy effectiveness and reducing toxic symptoms. Nanostructured exfoliated black phosphorus (2D BP) may represent a strategic tool for local cancer therapy because of its capability to induce singlet oxygen production and act as photosensitizer. Hence, we investigated 2D BP in vitro effect on healthy and cancer prostate cell behavior. 2D BP was obtained through liquid exfoliation. 2D BP effect on healthy and cancer prostate cell behaviors was analyzed by investigating cell viability, oxidative stress and inflammatory marker expression. 2D BP inhibited prostate cancer cell survival, meanwhile promoted healthy prostate cell survival in vitro by modulating oxidative stress and immune response with and without near-infrared light (NIR)-irradiation. Nanostructured 2D BP is able to inhibit in vitro prostate cancer cells survival and preserve healthy prostate cell vitality through the control of oxidative stress and immune response, respectively.


Subject(s)
Phosphorus/pharmacology , Prostate/pathology , Prostatic Neoplasms/pathology , Cell Count , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , Humans , Inflammation/pathology , Male , Neoplasm Proteins/metabolism , Nitrites/metabolism , Oxidative Stress/drug effects , Prostate/drug effects , Prostatic Neoplasms/immunology , Reactive Oxygen Species/metabolism , Spectrum Analysis, Raman , Tumor Suppressor Protein p53/metabolism
16.
ACS Appl Nano Mater ; 4(4): 3476-3485, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-35874274

ABSTRACT

Bidimensional (2D) materials are nowadays being developed as outstanding candidates for electronic and optoelectronic components and devices. Targeted applications include sensing, energy conversion, and storage. Phosphorene is one of the most promising systems in this context, but its high reactivity under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. However, phosphorene oxides in the form of low-dimensional structures (2D PO x ) should behave as an electroresponsive material according to recent theoretical studies. In the present work, we introduce electrospraying for the deposition of stoichiometric and large-area 2D PO x nanoflakes starting from a suspension of liquid-phase-exfoliated phosphorene. We obtained 2D PO x nanostructures with a mean surface area two orders of magnitude larger than phosphorene structures obtained with standard mechanical and liquid exfoliation techniques. X-ray spectroscopy and high-resolution electron microscopy confirmed the P2O5-like crystallographic structure of the electrosprayed flakes. Finally, we experimentally demonstrated for the first time the electromechanical responsivity of the 2D P2O5 nanoflakes, through piezoresponse force microscopy (PFM). This work sheds light on the possible implementation of phosphorus oxide-based 2D nanomaterials in the value chain of fabrication and engineering of devices, which might be easily scaled up for energy-harvesting/conversion applications.

17.
Nat Commun ; 11(1): 6125, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33257669

ABSTRACT

High pressure reactivity of phosphorus and hydrogen is relevant to fundamental chemistry, energy conversion and storage, and materials science. Here we report the synthesis of (PH3)2H2, a crystalline van der Waals (vdW) compound (I4cm) made of PH3 and H2 molecules, in a Diamond Anvil Cell by direct catalyst-free high pressure (1.2 GPa) and high temperature (T â‰² 1000 K) chemical reaction of black phosphorus and liquid hydrogen, followed by room T compression above 3.5 GPa. Group 15 elements were previously not known to form H2-containing vdW compounds of their molecular hydrides. The observation of (PH3)2H2, identified by synchrotron X-ray diffraction and vibrational spectroscopy (FTIR, Raman), therefore represents the discovery of a previously missing tile, specifically corresponding to P for pnictogens, in the ability of non-metallic elements to form such compounds. Significant chemical implications encompass reactivity of the elements under extreme conditions, with the observation of the P analogue of the Haber-Bosch reaction for N, fundamental bond theory, and predicted high pressure superconductivity in P-H systems.

18.
Dalton Trans ; 49(42): 15072-15080, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33107525

ABSTRACT

Functionalization is one of the most powerful tools in materials science for the development of new and innovative materials with tailored properties purposefully designed to enhance the overall stability of the system. This is particularly true for exfoliated black phosphorus, which suffers from easy decomposition by air and moisture, hampering its highly desirable applications, especially in electronics. The present work suggests an innovative approach to the functionalization process of this 2D-material based on the selective introduction of chalcogen atoms on the material surface through a reaction with suitable molecular precursors such as stibine chalcogenides (R3Sb(X), X = O or S; R = organyl group). These molecules may readily act as chalcogen-transfer agents and, upon releasing the chalcogen atom atop the bP surface, leave stable stibines (R3Sb) as byproducts, which may be easily removed from the functionalized bP surface. The work provides an overview of all the possible structural, electronic and energy aspects associated with the chalcogen-atom transfer from the stibine to phosphorus based compounds, exemplified by trialkyl phosphines and single layer exfoliated black phosphorus, i.e. phosphorene, Pn. In both cases the oxygen transfer is more exergonic than the sulfur transfer, with the associated free energy barrier for the phosphine process being higher. Although the sulfur transfer for the Pn is found to be endergonic (ca. +3.6 kcal mol-1), the process may surely occur at high temperature. The evolution of the band structure upon the chalcogen transfer has been depicted in detail.

19.
Nanotechnology ; 31(27): 275708, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32235041

ABSTRACT

Since its discovery, the environmental instability of exfoliated black phosphorus (2D bP) has emerged as a challenge that hampers its wide application in chemistry, physics, and materials science. Many studies have been carried out to overcome this drawback. Here we show a relevant enhancement of ambient stability in few-layer bP decorated with nickel nanoparticles as compared to pristine bP. In detail, the behavior of the Ni-functionalized material exposed to ambient conditions in the dark is accurately studied by Transmission Electron Microscopy (TEM), Raman Spectroscopy, and high resolution x-ray Photoemission and Absorption Spectroscopy. These techniques provide a morphological and quantitative insight of the oxidation process taking place at the surface of the bP flakes. In the presence of Ni nanoparticles (NPs), the decay time of 2D bP to phosphorus oxides is more than three time slower compared to pristine bP, demonstrating an improved structural stability within 20 months of observation.

20.
Nanoscale ; 12(7): 4491-4497, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32031199

ABSTRACT

Black phosphorus (bP) is a crystalline material which can be seen as an ordered stacking of two-dimensional layers, referred to as phosphorene. The knowledge of the linear thermal expansion coefficients (LTECs) of bP is of great interest in the field of 2D materials for a better understanding of the anisotropic thermal properties and exfoliation mechanism of this material. Despite several theoretical and experimental studies, important uncertainties remain in the determination of the LTECs of bP. Here, we report accurate thermal expansion measurements along the three crystallographic axes using in situ high temperature X-ray diffraction. From the progressive reduction of the diffracted intensities with temperature, we monitored the loss of the crystal structure of bP across the investigated temperature range, evidencing two thermal expansion regimes at temperature below and above 706 K. Below 706 K, a strong out-of-plane anisotropy can be observed, while at temperatures above 706 K a larger thermal expansion occurs along the a crystallographic direction. From our data and by taking advantage of ab initio optimization, we propose a detailed anisotropic thermal expansion mechanism of bP, which leads to an inter- and intra-layer destabilization. An interpretation of it, based on the high T perturbation of the stabilizing sp orbital mixing effect, is provided, consistent with the high pressure data.

SELECTION OF CITATIONS
SEARCH DETAIL
...