Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 9(9): 10017-10029, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463277

ABSTRACT

Across the globe, the task of providing clean and safe drinking water is getting harder. Organic contaminants, including dyes and pharmaceutical medications, are a significant environmental threat, especially in aquatic bodies due to their uncontrolled emission. Therefore, a method for their degradation in water bodies that is both environmentally friendly and commercially feasible must be developed. In the realm of photocatalysis, carbon-based nanomaterials have drawn more attention in the last ten years. Due to their exceptional and distinct qualities, metal-free carbon-based photocatalytic systems have received a lot of attention recently for their ability to degrade organic contaminants into semiconductor quantum dots, which are already available. A class of nanomaterials with a particle size between 2 and 10 nm showing distinct optoelectrical characteristics is among the variety of catalytic quantum dots. This review covers several synthesis techniques such as electrochemical, laser ablation, microwave radiation, hydrothermal, and optical features of CQDs such as the photoluminescent (PL) property and quantum confinement effect. The uses of CQDs in the degradation of various dyes as well as the difficulties that still exist and the opportunities that lie ahead have also been explored.

2.
J Biomol Struct Dyn ; : 1-21, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433423

ABSTRACT

In the current study, metronidazole derivatives containing 1H-1,2,3-triazole and carboxylate moieties were evaluated in vitro and by computational methods for their anti-diabetic potential to insight into their medicinal use for the management of type II diabetes mellitus. Interestingly all 14 compounds displayed high to significant inhibitory capability against the key carbohydrate's digestive enzyme α-glucosidase with IC50 values in range of 9.73-56.39 µM, as compared to marketed drug acarbose (IC50 = 873.34 ± 1.67 µM). Compounds 5i and 7c exhibited the highest inhibition, therefore, these two compounds were further evaluated for their mechanistic studies to explore its type of inhibition. Compounds 5i and 7c both displayed a concentration-dependent (competitive type of inhibition) with Ki values 7.14 ± 0.01, 6.15 ± 0.02 µM, respectively, which conclude their favourable interactions with the active site residues of the α-glucosidase. Interestingly all compounds are non-cytotoxic against BJ cell line. To further validate our findings, in-silico approaches like molecular docking, and molecular dynamic simulations were applied to investigate the mode of bindings of compounds with the enzyme and identifies their inhibition mechanism, which strongly complements our experimental findings.Communicated by Ramaswamy H. Sarma.

3.
RSC Adv ; 13(1): 506-515, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36605674

ABSTRACT

Recent years have seen research into developing specific application-based materials with particular components. Bio-based polyurethanes (PUs) with self-tightening effect through shape recovery at low temperature have been designed from sesame oil-based plasticizer (HSSO). Without using a catalyst, the produced plasticizer was used to create PU samples. In contrast, orcein-based PU has been created both with and without HSSO. The prepared samples have been analyzed through instrumental as well as chemical analyses for surface chemistry, thermal stability and morphology. The gel content and water absorption capacity of HSSO based PU samples has been observed to be 99.27% and 14.94%, respectively. Shape memory study of the PU samples revealed that HSSO-based PU showed fast shape recovery at 60 °C with shape recovery rate (R r) and shape fixing rate (R f) of 94.44% and 5%, respectively, in 150 seconds, whereas at 36 °C the sample showed 85% R r in 15 minutes with 93.1196 N force and 52.78% R r without force. Low-temperature thermal actuation and high water uptake highlight the prepared samples as suitable candidates for self-tightening structures in textile and biomedical fields.

SELECTION OF CITATIONS
SEARCH DETAIL