Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Direct ; 18(1): 69, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37899453

ABSTRACT

Bcl-B is a poorly understood protein of the Bcl-2 family that is highly expressed in many healthy tissues and tumor types. Bcl-B is considered an antiapoptotic protein, but many reports have revealed its contradictory roles in different cancer types. In this mini-review, we elucidate the functions of Bcl-B in normal conditions and various pathologies, its regulation of programmed cell death, its oncogene/oncosuppressor activity in tumorigenesis, its impact on drug-acquired resistance, and possible approaches to inhibit Bcl-B.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-bcl-2 , Humans , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Neoplasms/genetics
2.
Front Pharmacol ; 13: 962763, 2022.
Article in English | MEDLINE | ID: mdl-36016563

ABSTRACT

Nanomaterials are a central pillar in modern medicine. They are thought to optimize drug delivery, enhance therapeutic efficacy, and reduce side-effects. To foster this technology, analytical methods are needed to validate not only the localization and distribution of these nanomaterials, but also their compatibility with cells, drugs, and drug release. In the present work, we assessed nanoparticles based on porous silicon (pSiNPs) loaded with the clinically used tyrosine kinase inhibitor sunitinib for their effectiveness of drug delivery, release, and toxicity in colon cancer cells (HCT 116 cells) and cardiac myoblast cells (H9c2) using Raman micro-spectroscopy, high-resolution fluorescence microscopy, along with biological methods for toxicological effects. We produced pSiNPs with a size of about 100 nm by grinding mesoporous silicon layers. pSiNPs allowed an effective loading of sunitinib due to their high porosity. Photoluminescence properties of the nanoparticles within the visible spectrum allowed the visualization of their uptake in cardiac cells. Raman micro-spectroscopy allowed not only the detection of the uptake and distribution of pSiNPs within the cells via a characteristic silicon Raman band at about 518-520 cm-1, but also the localization of the drug based on its characteristic molecular fingerprints. Cytotoxicity studies by Western blot analyses of apoptotic marker proteins such as caspase-3, and the detection of apoptosis by subG1-positive cell fractions in HCT 116 and MTT analyses in H9c2 cells, suggest a sustained release of sunitinib from pSiNPs and delayed cytotoxicity of sunitinib in HCT 116 cells. The analyses in cardiac cells revealed that pSiNPs are well tolerated and that they may even protect from toxic effects in these cells to some extent. Analyses of the integrity of mitochondrial networks as an early indicator for apoptotic cellular effects seem to validate these observations. Our study suggests pSiNPs-based nanocontainers for efficient and safe drug delivery and Raman micro-spectroscopy as a reliable method for their detection and monitoring. Thus, the herein presented nanocontainers and analytical methods have the potential to allow an efficient advancement of nanoparticles for targeted and sustained intracellular drug release that is of need, e.g., in chronic diseases and for the prevention of cardiac toxicity.

3.
Biochemistry (Mosc) ; 85(10): 1210-1226, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33202206

ABSTRACT

Proteins of the Bcl-2 family are known as regulators of apoptosis, one of the most studied forms of programmed cell death. The Bcl-2 protein family is represented by both pro- and antiapoptotic members. Antiapoptotic proteins are often exploited by tumor cells to avoid their death, thus playing an important role in carcinogenesis and in acquisition of resistance to various therapeutic agents. Therefore, antiapoptotic proteins represent attractive targets for cancer therapy. A detailed investigation of interactions between Bcl-2 family proteins resulted in the development of highly selective inhibitors of individual antiapoptotic members. These agents are currently being actively studied at the preclinical and clinical stages and represent a promising therapeutic strategy, which is highlighted by approval of venetoclax, a selective inhibitor of Bcl-2, for medical use. Meanwhile, inhibition of antiapoptotic Bcl-2 family proteins has significant therapeutic potential that is yet to be revealed. In the coming era of precision medicine, a detailed study of the mechanisms responsible for the sensitivity or resistance of tumor cells to various therapeutic agents, as well as the search for the most effective combinations, is of great importance. Here, we discuss mechanisms of how the Bcl-2 family proteins function, principles of their inhibition by small molecules, success of this approach in cancer therapy, and, eventually, biochemical features that can be exploited to improve the use of Bcl-2 family inhibitors as anticancer drugs.


Subject(s)
Antineoplastic Agents , Apoptosis/drug effects , Neoplasms , Peptide Fragments , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Line, Tumor , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Proto-Oncogene Proteins/pharmacology , Proto-Oncogene Proteins/therapeutic use , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/physiology , Sulfonamides/therapeutic use
4.
Biochemistry (Mosc) ; 85(10): 1235-1244, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33202208

ABSTRACT

The antiapoptotic protein Mcl-1, which is an attractive target for cancer treatment, is degraded under nutrient deprivation conditions in different types of cancer. This process sensitizes cancer cells to chemotherapy. It has been found that nutrient deprivation leads to suppression of Mcl-1 synthesis; however, the mechanisms of Mcl-1 degradation under such conditions remain to be elucidated. In this study, we have investigated the contribution of autophagy and proteasomal degradation to the regulation of the level of Mcl-1 protein under nutrient deprivation conditions. We found that these circumstances cause a decrease in the level of Mcl-1 in cancer cells in a macroautophagy-independent manner via proteasomal degradation.


Subject(s)
Apoptosis , Autophagy , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/metabolism , Nutrients/deficiency , Cell Line, Tumor , Humans , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL