Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4332, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922557

ABSTRACT

European bison is a species for which health monitoring is essential in conservation activities. So far, little research has been carried out on the concentration of elements in this species. Most previous studies did not associate the concentration of elements with susceptibility to diseases. In this study we investigate the relationship between comorbidities in European bison and concentrations of a wide spectrum of elements in the liver. Samples were collected during the monitoring of the European bison population in Bieszczady (southeast Poland) over the 2020-2022 period. Each individual was also visually inspected by a veterinarian in the field for the presence of lesions as a part of a post-mortem examination. The animals were divided into 3 groups: group A-one type of clinical sign; group B-two types of clinical signs; group C-three or more types of clinical signs. The ICP-OES method was applied to assess the concentration of 40 elements in livers. Discriminant analysis showed clear differences between the mineral status of individuals in the groups with one, two, and at least three types of clinical signs. Detailed analysis of selected elements showed that, in the case of eight elements, there was a relationship with age, sex, or comorbidities. Cu, Se, and Zn showed significant differences in relation to comorbidities, but only Cu concentration was lower when the frequency of lesions was higher. We concluded that in research on the mineral status of the population, apart from the availability of trace elements in the environment, the health condition of the studied individuals should also be considered. However, inferring the mineral status of the population on the basis of randomly obtained samples from dead individuals may give an incomplete view of the population, especially in the case of species susceptible to diseases, such as European bison.


Subject(s)
Bison , Trace Elements , Animals , Trace Elements/analysis , Poland/epidemiology , Minerals/analysis , Liver/chemistry
2.
Ecol Appl ; 21(3): 830-43, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21639048

ABSTRACT

Habitat loss threatens large mammals worldwide, and their survival will depend on habitat in human-dominated landscapes. Conservation planners thus face the challenge to identify areas of least conflict with land use, yet broadscale species distribution models rarely incorporate real landscape patterns nor do they identify potential conservation conflicts. An excellent example of such conservation challenges is provided by European bison (Bison bonasus). Almost extinct by the early 20th century, bison can only survive in the wild if large metapopulations are established, but it is unclear where new herds can be reintroduced. Using European bison as an example we conducted a continental-scale habitat assessment based on real landscape patterns. Our specific aims here were to (1) map European bison habitat throughout the species' former range, (2) examine whether broadscale habitat suitability factors differ from previously reported fine-scale factors, and (3) assess where suitable habitat occurs in areas with low potential for conflict with land use. We assessed habitat suitability using herd range maps for all 36 free-ranging European bison herds as habitat use data. Habitat suitability maps were compared with maps of land cover, livestock density, agricultural constraints, and protected areas to assess potential conservation conflicts. Our models had high goodness of fit (AUC = 0.941), and we found abundant potential bison habitat. European bison prefer mosaic-type landscapes, with a preference for broad-leaved and mixed forests. European bison metapopulations do not appear to be limited by habitat availability. However, most potential habitat occurred outside protected areas and has substantial potential for conservation conflicts. The most promising areas for establishing large bison metapopulations all occur in Eastern Europe (i.e., the Carpathians, the Belarus-Ukraine borderlands, and several regions in European Russia). The future of European bison and that of other large mammals in the wild thus clearly lies in Eastern Europe, because habitat there is most abundant and least fragmented, and because the potential for conflict with land use is lower. More generally we suggest that broadscale habitat assessments that incorporate land use can be powerful tools for conservation planning and will be key if large herbivore and carnivore conservation is to succeed in a human-dominated world.


Subject(s)
Bison/physiology , Demography , Ecosystem , Agriculture , Animals , Climate , Conservation of Natural Resources , Europe , Models, Biological
3.
Acta Theriol (Warsz) ; 56(1): 1-12, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21350595

ABSTRACT

European red deer are known to show a conspicuous phylogeographic pattern with three distinct mtDNA lineages (western, eastern and North-African/Sardinian). The western lineage, believed to be indicative of a southwestern glacial refuge in Iberia and southern France, nowadays covers large areas of the continent including the British Isles, Scandinavia and parts of central Europe, while the eastern lineage is primarily found in southeast-central Europe, the Carpathians and the Balkans. However, large parts of central Europe and the whole northeast of the continent were not covered by previous analyses. To close this gap, we produced mtDNA control region sequences from more than 500 red deer from Denmark, Germany, Poland, Lithuania, Belarus, Ukraine and western Russia and combined our data with sequences available from earlier studies to an overall sample size of almost 1,100. Our results show that the western lineage extends far into the European east and is prominent in all eastern countries except for the Polish Carpathians, Ukraine and Russia where only eastern haplotypes occurred. While the latter may actually reflect the natural northward expansion of the eastern lineage after the last ice age, the present distribution of the western lineage in eastern Europe may in large parts be artificial and a result of translocations and reintroduction of red deer into areas where the species became extinct in historical times.

4.
Ecol Appl ; 17(5): 1279-95, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17708208

ABSTRACT

Forests provide important ecosystem services, and protected areas around the world are intended to reduce human disturbance on forests. The question is how forest cover is changing in different parts of the world, why some areas are more frequently disturbed, and if protected areas are effective in limiting anthropogenic forest disturbance. The Carpathians are Eastern Europe's largest contiguous forest ecosystem and are a hotspot of biodiversity. Eastern Europe has undergone dramatic changes in political and socioeconomic structures since 1990, when socialistic state economies transitioned toward market economies. However, the effects of the political and economic transition on Carpathian forests remain largely unknown. Our goals were to compare post-socialist forest disturbance and to assess the effectiveness of protected areas in the border triangle of Poland, Slovakia, and Ukraine, to better understand the role of broadscale political and socioeconomic factors. Forest disturbances were assessed using the forest disturbance index derived from Landsat MSS/TM/ETM+ images from 1978 to 2000. Our results showed increased harvesting in all three countries (up to 1.8 times) in 1988-1994, right after the system change. Forest disturbance rates differed markedly among countries (disturbance rates in Ukraine were 4.5 times higher than in Poland, and those in Slovakia were 4.3 times higher than in Poland), and in Ukraine, harvests tended to occur at higher elevations. Forest fragmentation increased in all three countries but experienced a stronger increase in Slovakia and Ukraine (approximately 5% decrease in core forest) than in Poland. Protected areas were most effective in Poland and in Slovakia, where harvesting rates dropped markedly (by nearly an order of magnitude in Slovakia) after protected areas were designated. In Ukraine, harvesting rates inside and outside protected areas did not differ appreciably, and harvests were widespread immediately before the designation of protected areas. In summary, the socioeconomic changes in Eastern Europe that occurred since 1990 had strong effects on forest disturbance. Differences in disturbance rates among countries appear to be most closely related to broadscale socioeconomic conditions, forest management practices, forest policies, and the strength of institutions. We suggest that such factors may be equally important in other regions of the world.


Subject(s)
Conservation of Natural Resources/methods , Ecology , Forestry/legislation & jurisprudence , Trees/growth & development , Animals , Biodiversity , Conservation of Natural Resources/economics , Conservation of Natural Resources/legislation & jurisprudence , Forestry/economics , Forestry/methods , Geography , Poland , Public Policy , Slovakia , Socioeconomic Factors , Time Factors , Ukraine
SELECTION OF CITATIONS
SEARCH DETAIL
...