Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PNAS Nexus ; 2(3): pgad043, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36909829

ABSTRACT

Inherited retinal diseases (IRDs) are a group of ocular conditions characterized by an elevated genetic and clinical heterogeneity. They are transmitted almost invariantly as monogenic traits. However, with more than 280 disease genes identified so far, association of clinical phenotypes with genotypes can be very challenging, and molecular diagnosis is essential for genetic counseling and correct management of the disease. In addition, the prevalence and the assortment of IRD mutations are often population-specific. In this work, we examined 230 families from Portugal, with individuals suffering from a variety of IRD diagnostic classes (270 subjects in total). Overall, we identified 157 unique mutations (34 previously unreported) in 57 distinct genes, with a diagnostic rate of 76%. The IRD mutational landscape was, to some extent, different from those reported in other European populations, including Spanish cohorts. For instance, the EYS gene appeared to be the most frequently mutated, with a prevalence of 10% among all IRD cases. This was, in part, due to the presence of a recurrent and seemingly founder mutation involving the deletion of exons 13 and 14 of this gene. Moreover, our analysis highlighted that as many as 51% of our cases had mutations in a homozygous state. To our knowledge, this is the first study assessing a cross-sectional genotype-phenotype landscape of IRDs in Portugal. Our data reveal a rather unique distribution of mutations, possibly shaped by a small number of rare ancestral events that have now become prevalent alleles in patients.

2.
Mol Vis ; 27: 107-116, 2021.
Article in English | MEDLINE | ID: mdl-33907366

ABSTRACT

Purpose: Heterozygous mutations in the gene PRPF31, encoding a pre-mRNA splicing factor, cause autosomal dominant retinitis pigmentosa (adRP) with reduced penetrance. At the molecular level, pathogenicity results from haploinsufficiency, as the largest majority of such mutations trigger nonsense-mediated mRNA decay or involve large deletions of coding exons. We investigated genetically two families with a history of adRP, one of whom showed incomplete penetrance. Methods: All patients underwent thorough ophthalmological examination, including electroretinography (ERG) and Goldmann perimetry. Array-based comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MLPA) were used to map heterozygous deletions, while real-time PCR on genomic DNA and long-range PCR allowed resolving the mutations at the base-pair level. PRPF31 transcripts were quantified with real-time PCR on patient-derived lymphoblastoid cell lines. Results: We identified two independent deletions affecting the promoter and the 5' untranslated region (UTR) of PRPF31 but leaving its coding sequence completely unaltered. Analysis of PRPF31 mRNA from lymphoblastoid cell lines from one of these families showed reduced levels of expression in patients versus controls, probably due to the heterozygous ablation of its promoter sequences. Conclusions: In addition to reporting the identification of two novel noncoding deletions in PRPF31, this study provides strong additional evidence that mRNA-mediated haploinsufficiency is the primary cause of pathogenesis for PRPF31-linked adRP.


Subject(s)
5' Untranslated Regions/genetics , Eye Proteins/genetics , Gene Expression Regulation/physiology , Promoter Regions, Genetic/genetics , RNA, Untranslated/genetics , Retinitis Pigmentosa/genetics , Sequence Deletion/genetics , Adolescent , Adult , Cell Line , Comparative Genomic Hybridization , Electroretinography , Female , Heterozygote , Humans , Male , Middle Aged , Multiplex Polymerase Chain Reaction , Pedigree , Real-Time Polymerase Chain Reaction , Retina/physiopathology , Retinitis Pigmentosa/diagnostic imaging , Retinitis Pigmentosa/physiopathology , Tomography, Optical Coherence , Visual Field Tests
3.
Nature ; 592(7852): 93-98, 2021 04.
Article in English | MEDLINE | ID: mdl-33568816

ABSTRACT

Long non-coding RNAs (lncRNAs) can be important components in gene-regulatory networks1, but the exact nature and extent of their involvement in human Mendelian disease is largely unknown. Here we show that genetic ablation of a lncRNA locus on human chromosome 2 causes a severe congenital limb malformation. We identified homozygous 27-63-kilobase deletions located 300 kilobases upstream of the engrailed-1 gene (EN1) in patients with a complex limb malformation featuring mesomelic shortening, syndactyly and ventral nails (dorsal dimelia). Re-engineering of the human deletions in mice resulted in a complete loss of En1 expression in the limb and a double dorsal-limb phenotype that recapitulates the human disease phenotype. Genome-wide transcriptome analysis in the developing mouse limb revealed a four-exon-long non-coding transcript within the deleted region, which we named Maenli. Functional dissection of the Maenli locus showed that its transcriptional activity is required for limb-specific En1 activation in cis, thereby fine-tuning the gene-regulatory networks controlling dorso-ventral polarity in the developing limb bud. Its loss results in the En1-related dorsal ventral limb phenotype, a subset of the full En1-associated phenotype. Our findings demonstrate that mutations involving lncRNA loci can result in human Mendelian disease.


Subject(s)
Extremities , Homeodomain Proteins/genetics , Limb Deformities, Congenital/genetics , RNA, Long Noncoding/genetics , Sequence Deletion/genetics , Transcription, Genetic , Transcriptional Activation/genetics , Animals , Cell Line , Chromatin/genetics , Disease Models, Animal , Female , Humans , Mice , Mice, Transgenic
4.
PLoS Genet ; 16(12): e1009201, 2020 12.
Article in English | MEDLINE | ID: mdl-33383577

ABSTRACT

Conjunctival melanoma (CJM) is a rare but potentially lethal and highly-recurrent cancer of the eye. Similar to cutaneous melanoma (CM), it originates from melanocytes. Unlike CM, however, CJM is relatively poorly characterized from a genomic point of view. To fill this knowledge gap and gain insight into the genomic nature of CJM, we performed whole-exome (WES) or whole-genome sequencing (WGS) of tumor-normal tissue pairs in 14 affected individuals, as well as RNA sequencing in a subset of 11 tumor tissues. Our results show that, similarly to CM, CJM is also characterized by a very high mutation load, composed of approximately 500 somatic mutations in exonic regions. This, as well as the presence of a UV light-induced mutational signature, are clear signs of the role of sunlight in CJM tumorigenesis. In addition, the genomic classification of CM proposed by TCGA seems to be well-applicable to CJM, with the presence of four typical subclasses defined on the basis of the most frequently mutated genes: BRAF, NF1, RAS, and triple wild-type. In line with these results, transcriptomic analyses revealed similarities with CM as well, namely the presence of a transcriptomic subtype enriched for immune genes and a subtype enriched for genes associated with keratins and epithelial functions. Finally, in seven tumors we detected somatic mutations in ACSS3, a possible new candidate oncogene. Transfected conjunctival melanoma cells overexpressing mutant ACSS3 showed higher proliferative activity, supporting the direct involvement of this gene in the tumorigenesis of CJM. Altogether, our results provide the first unbiased and complete genomic and transcriptomic classification of CJM.


Subject(s)
Conjunctival Neoplasms/genetics , DNA Copy Number Variations , Melanoma/genetics , Mutation , Transcriptome , Cell Line, Tumor , Conjunctival Neoplasms/metabolism , Female , Humans , Male , Melanoma/metabolism , Middle Aged , Neurofibromin 1/genetics , Proto-Oncogene Proteins B-raf/genetics , ras Proteins/genetics
5.
Genet Med ; 21(12): 2734-2743, 2019 12.
Article in English | MEDLINE | ID: mdl-31263216

ABSTRACT

PURPOSE: We observed four individuals in two unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature. The phenotype precisely matched that of an individual of Azorean descent published in 1986 by Liberfarb and coworkers. METHODS: Patients underwent specialized clinical examinations (including ophthalmological, audiological, orthopedic, radiological, and developmental assessment). Exome and targeted sequencing was performed on selected individuals. Minigene constructs were assessed by quantitative polymerase chain reaction (qPCR) and Sanger sequencing. RESULTS: Affected individuals shared a 3.36-Mb region of autozygosity on chromosome 22q12.2, including a 10-bp deletion (NM_014338.3:c.904-12_904-3delCTATCACCAC), immediately upstream of the last exon of the PISD (phosphatidylserine decarboxylase) gene. Sequencing of PISD from paraffin-embedded tissue from the 1986 case revealed the identical homozygous variant. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. CONCLUSION: We have identified the genetic etiology of the Liberfarb syndrome, affecting brain, eye, ear, bone, and connective tissue. Our work documents the migration of a rare Portuguese founder variant to two continents and highlights the link between phospholipid metabolism and bone formation, sensory defects, and cerebral development, while raising the possibility of therapeutic phospholipid replacement.


Subject(s)
Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Adolescent , Adult , Brazil , Exome/genetics , Female , Genotype , HEK293 Cells , Hearing Loss, Sensorineural/genetics , Humans , Intellectual Disability/genetics , Male , Microcephaly/genetics , Musculoskeletal Abnormalities/genetics , Osteochondrodysplasias/genetics , Pedigree , Phenotype , Portugal , Retinal Degeneration/genetics , Syndrome , Young Adult
6.
Invest Ophthalmol Vis Sci ; 60(7): 2764-2772, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31247083

ABSTRACT

Purpose: To analyze the activity of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinases/mechanistic target of rapamycin (PI3K/mTOR) pathways in benign and malignant conjunctival melanocytic proliferations and explore whether specific inhibitors can suppress growth of conjunctival melanoma (CJM) cells. Methods: The presence of a BRAF V600E mutation and activation of ERK, MEK, S6, and AKT were assessed with immunohistochemistry in 35 conjunctival nevi and 31 melanomas. Three CJM cell lines were used: CRMM1, carrying the BRAF V600E mutation; CRMM2, harboring the NRAS Q61L mutation; and T1527A, with a BRAF G466E mutation. WST-1 assays were performed with a BRAF inhibitor (vemurafenib), two MEK inhibitors (trametinib, selumetinib), a PI3K inhibitor (pictilisib), and a dual PI3K/mTOR inhibitor (dactolisib). The phosphorylation of ERK, MEK, and S6 were tested with western blots and apoptosis with cleaved caspase-3 immunostaining. Results: A BRAF V600E mutation was detected in 42.6% of nevi and in 35.5% of CJM. MEK and ERK activation were higher in CJM, occurring in 62.9% and 45.7% of the nevi and 90.3% and 96.8% of the CJM, respectively. There was also a significant increase in S6 activation in CJM (90.3%) compared with the nevi (20%). CRMM1 was sensitive to trametinib and the PI3K inhibitors but only marginally to vemurafenib. CRMM2 was moderately sensitive to pictilisib, whereas T1527A was resistant to all drugs tested. Conclusions: The MAPK pathway activity in CJM is increased, not only as a consequence of the BRAF V600E mutation. Targeted therapy may be useful for patients with CJM, especially those with activating BRAF mutations, whereas NRAS-mutated melanomas are relatively resistant.


Subject(s)
Antineoplastic Agents/therapeutic use , Conjunctival Neoplasms/drug therapy , Melanoma/drug therapy , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Molecular Targeted Therapy , Phosphatidylinositol 3-Kinases/drug effects , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Benzimidazoles/therapeutic use , Blotting, Western , Conjunctival Neoplasms/enzymology , Conjunctival Neoplasms/pathology , Female , Fluorescent Antibody Technique, Indirect , Humans , Imidazoles/therapeutic use , Indazoles/therapeutic use , Male , Melanoma/enzymology , Melanoma/pathology , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Quinolines/therapeutic use , Sulfonamides/therapeutic use , Tumor Cells, Cultured
7.
Am J Hum Genet ; 99(5): 1190-1198, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27745836

ABSTRACT

Uveal melanoma (UM) is a rare intraocular tumor that, similar to cutaneous melanoma, originates from melanocytes. To gain insights into its genetics, we performed whole-genome sequencing at very deep coverage of tumor-control pairs in 33 samples (24 primary and 9 metastases). Genome-wide, the number of coding mutations was rather low (only 17 variants per tumor on average; range 7-28), thus radically different from cutaneous melanoma, where hundreds of exonic DNA insults are usually detected. Furthermore, no UV light-induced mutational signature was identified. Recurrent coding mutations were found in the known UM drivers GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Other genes, i.e., TP53BP1, CSMD1, TTC28, DLK2, and KTN1, were also found to harbor somatic mutations in more than one individual, possibly indicating a previously undescribed association with UM pathogenesis. De novo assembly of unmatched reads from non-coding DNA revealed peculiar copy-number variations defining specific UM subtypes, which in turn could be associated with metastatic transformation. Mutational-driven comparison with other tumor types showed that UM is very similar to pediatric tumors, characterized by very few somatic insults and, possibly, important epigenetic changes. Through the analysis of whole-genome sequencing data, our findings shed new light on the molecular genetics of uveal melanoma, delineating it as an atypical tumor of the adult for which somatic events other than mutations in exonic DNA shape its genetic landscape and define its metastatic potential.


Subject(s)
Genome-Wide Association Study , Melanoma/genetics , Uveal Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , DNA Copy Number Variations , Eukaryotic Initiation Factor-1/genetics , Eukaryotic Initiation Factor-1/metabolism , Exons , Female , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Male , Melanocytes/pathology , Melanoma/diagnosis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Mutation , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Skin Neoplasms , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Uveal Neoplasms/diagnosis , Melanoma, Cutaneous Malignant
8.
J Neurosci ; 35(15): 6093-106, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25878282

ABSTRACT

We have identified and characterized a spontaneous Brown Norway from Janvier rat strain (BN-J) presenting a progressive retinal degeneration associated with early retinal telangiectasia, neuronal alterations, and loss of retinal Müller glial cells resembling human macular telangiectasia type 2 (MacTel 2), which is a retinal disease of unknown cause. Genetic analyses showed that the BN-J phenotype results from an autosomal recessive indel novel mutation in the Crb1 gene, causing dislocalization of the protein from the retinal Müller glia (RMG)/photoreceptor cell junction. The transcriptomic analyses of primary RMG cultures allowed identification of the dysregulated pathways in BN-J rats compared with wild-type BN rats. Among those pathways, TGF-ß and Kit Receptor Signaling, MAPK Cascade, Growth Factors and Inflammatory Pathways, G-Protein Signaling Pathways, Regulation of Actin Cytoskeleton, and Cardiovascular Signaling were found. Potential molecular targets linking RMG/photoreceptor interaction with the development of retinal telangiectasia are identified. This model can help us to better understand the physiopathologic mechanisms of MacTel 2 and other retinal diseases associated with telangiectasia.


Subject(s)
Ependymoglial Cells/pathology , Eye Proteins/genetics , Mutation/genetics , Retinal Degeneration , Telangiectasis/complications , Telangiectasis/genetics , Age Factors , Animals , Animals, Newborn , Cells, Cultured , Disease Models, Animal , Electroretinography , Ependymoglial Cells/metabolism , Ependymoglial Cells/ultrastructure , Eye Proteins/metabolism , Fluorescein Angiography , Glial Fibrillary Acidic Protein/metabolism , Neurons/pathology , Neurons/ultrastructure , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Rats , Rats, Mutant Strains , Retinal Degeneration/etiology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Vessels/pathology , Retinal Vessels/ultrastructure , Signal Transduction/physiology , Visual Pathways/pathology , Visual Pathways/ultrastructure
9.
Neuropathol Appl Neurobiol ; 40(5): 564-78, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23551178

ABSTRACT

AIMS: Sphingosine-1-phosphate receptor (S1PR) modulating therapies are currently in the clinic or undergoing investigation for multiple sclerosis (MS) treatment. However, the expression of S1PRs is still unclear in the central nervous system under normal conditions and during neuroinflammation. METHODS: Using immunohistochemistry we examined tissues from both grey and white matter MS lesions for sphingosine-1-phosphate receptor 1 (S1P1 ) and 5 (S1P5 ) expression. Tissues from Alzheimer's disease (AD) cases were also examined. RESULTS: S1P1 expression was restricted to astrocytes and endothelial cells in control tissues and a decrease in endothelial cell expression was found in white matter MS lesions. In grey matter MS lesions, astrocyte expression was lost in active lesions, while in quiescent lesions it was restored to normal expression levels. CNPase colocalization studies demonstrated S1P5 expression on myelin and both were reduced in demyelinated lesions. In AD tissues we found no difference in S1P1 expression. CONCLUSION: These data demonstrate a differential modulation of S1PRs in MS lesions, which may have an impact on S1PR-directed therapies.


Subject(s)
Brain/metabolism , Multiple Sclerosis/metabolism , Receptors, Lysosphingolipid/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Astrocytes/metabolism , Brain/pathology , Endothelial Cells/metabolism , Female , Gray Matter/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Multiple Sclerosis/pathology , Sphingosine-1-Phosphate Receptors , White Matter/metabolism
10.
PLoS One ; 7(7): e40457, 2012.
Article in English | MEDLINE | ID: mdl-22792334

ABSTRACT

Multiple sclerosis (MS) is a neuroinflammatory disease characterized by a progressive loss of myelin and a failure of oligodendrocyte (OL)-mediated remyelination, particularly in the progressive phases of the disease. An improved understanding of the signaling mechanisms that control differentiation of OL precursors may lead to the identification of new therapeutic targets for remyelination in MS. About 100 mammalian Protein Tyrosine Phosphatases (PTPs) are known, many of which are involved in signaling both in health and disease. We have undertaken a systematic genomic approach to evaluate PTP gene activity in multiple sclerosis autopsies and in related in vivo and in vitro models of the disease. This effort led to the identification of Dusp15/VHY, a PTP previously believed to be expressed only in testis, as being transcriptionally regulated during OL differentiation and in MS lesions. Subsequent RNA interference studies revealed that Dusp15/VHY is a key regulator of OL differentiation. Finally, we identified PDGFR-beta and SNX6 as novel and specific Dusp15 substrates, providing an indication as to how this PTP might exert control over OL differentiation.


Subject(s)
Cell Differentiation , Dual-Specificity Phosphatases/genetics , Multiple Sclerosis/enzymology , Oligodendroglia/enzymology , Aged , Animals , Brain/enzymology , Cells, Cultured , Cerebellum/enzymology , Dual-Specificity Phosphatases/chemistry , Dual-Specificity Phosphatases/metabolism , Encephalomyelitis, Autoimmune, Experimental/enzymology , Female , Gene Knockdown Techniques , Genomics , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Multiple Sclerosis/pathology , Myelin Basic Protein/metabolism , Oligodendroglia/physiology , Phosphoproteins/chemistry , Phosphoproteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Receptor, Platelet-Derived Growth Factor beta/chemistry , Receptor, Platelet-Derived Growth Factor beta/metabolism , Signal Transduction , Sorting Nexins/chemistry , Sorting Nexins/metabolism , Spinal Cord/enzymology , Substrate Specificity , Transcriptome
11.
PLoS One ; 6(6): e21519, 2011.
Article in English | MEDLINE | ID: mdl-21738687

ABSTRACT

Genetic variants of Leucine-Rich Repeat Kinase 2 (LRRK2) are associated with a significantly enhanced risk for Parkinson disease, the second most common human neurodegenerative disorder. Despite major efforts, our understanding of LRRK2 biological function and regulation remains rudimentary. In the present study we analyze LRRK2 mRNA and protein expression in sub-populations of human peripheral blood mononuclear cells (PBMCs). LRRK2 mRNA and protein was found in circulating CD19(+) B cells and in CD14(+) monocytes, whereas CD4(+) and CD8(+) T cells were devoid of LRRK2 mRNA. Within CD14(+) cells the CD14(+)CD16(+) sub-population of monocytes exhibited high levels of LRRK2 protein, in contrast to CD14(+)CD16(-) cells. However both populations expressed LRRK2 mRNA. As CD14(+)CD16(+) cells represent a more mature subset of monocytes, we monitored LRRK2 expression after in vitro treatment with various stress factors known to induce monocyte activation. We found that IFN-γ in particular robustly increased LRRK2 mRNA and protein levels in monocytes concomitant with a shift of CD14(+)CD16(-) cells towards CD14(+)CD16(+) cells. Interestingly, the recently described LRRK2 inhibitor IN-1 attenuated this shift towards CD14(+)CD16(+) after IFN-γ stimulation. Based on these findings we speculate that LRRK2 might have a role in monocyte maturation. Our results provide further evidence for the emerging role of LRRK2 in immune cells and regulation at the transcriptional and translational level. Our data might also reflect an involvement of peripheral and brain immune cells in the disease course of PD, in line with increasing awareness of the role of the immune system in PD.


Subject(s)
Leukocytes, Mononuclear/metabolism , Protein Serine-Threonine Kinases/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Humans , Interferon-gamma/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Leukocytes, Mononuclear/drug effects , Protein Serine-Threonine Kinases/genetics , Receptors, IgG/metabolism
12.
J Neurosci Res ; 88(12): 2546-57, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20544820

ABSTRACT

Oligodendrocytes generate and maintain myelin, which is essential for axonal function and protection of the mammalian central nervous system. To advance our molecular understanding of differentiation by these cells, we screened libraries of pharmacologically active compounds and identified inducers of differentiation of Oli-neu, a stable cell line of mouse oligodendrocyte precursors (OPCs). We identified four broad classes of inducers, namely, forskolin/cAMP (protein kinase A activators), steroids (glucocorticoids and retinoic acid), ErbB2 inhibitors, and nucleoside analogs, and confirmed the activity of these compounds on rat primary oligodendrocyte precursors and mixed cortical cultures. We also analyzed transcriptional responses in the chemically induced mouse and rat OPC differentiation processes and compared these with earlier studies. We confirm the view that ErbB2 is a natural signaling component that is required for OPC proliferation, whereas ErbB2 inhibition or genetic knockdown results in OPC differentiation.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation/drug effects , Cerebral Cortex/metabolism , Oligodendroglia/metabolism , Signal Transduction/physiology , Stem Cells/metabolism , Animals , Animals, Newborn , Biomarkers/analysis , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Line , Cells, Cultured , Cerebral Cortex/cytology , Colforsin/metabolism , Colforsin/pharmacology , Cyclic AMP/metabolism , Cyclic AMP/pharmacology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Mice , Oligodendroglia/cytology , RNA Interference/physiology , Rats , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/deficiency , Receptor, ErbB-2/genetics , Signal Transduction/drug effects , Stem Cells/cytology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...