Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biol Int ; 46(9): 1468-1479, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35811464

ABSTRACT

Replicative immortality is a key feature of cancer cells and it is maintained by the expression of telomerase, a promising target of novel therapies. Long-term telomerase inhibition can induce resistance, but the mechanisms underlying this process remain unclear. The Sonic hedgehog pathway (SHH) is an embryogenic pathway involved in tumorigenesis and modulates the transcription of telomerase. We evaluated the effects of long-term treatment of the telomerase inhibitor MST-312 in morphology, proliferation, resistance, and in the SHH pathway molecules expression levels in lung cancer cells. Cells treated for 12 weeks with MST-312 showed changes in morphology, such as spindle-shaped cells, and a shift in the distribution of F-ACTIN from cortical to diffuse. Treatment also significantly reduced cells' efficiency to form spheroids and their clonogenic potential, independently of the cell cycle and telomeric DNA content. Moreover, GLI-1 expression levels were significantly reduced after 12 weeks of MST-312 treatment, indicating a possible inhibition of this signaling axis in the SHH pathway, without hindering NANOG and OCT4 expression. Here, we described a novel implication of long-term treatment with MST-312 functionally and molecularly, shedding new light on the molecular mechanisms of this drug in vitro.


Subject(s)
Lung Neoplasms , Telomerase , Benzamides , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Hedgehog Proteins/metabolism , Humans , Telomerase/metabolism , Zinc Finger Protein GLI1/metabolism
2.
Crit Rev Oncol Hematol ; 155: 103109, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33049662

ABSTRACT

Circulating tumor DNA (ctDNA) in fluids has gained attention because ctDNA seems to identify tumor-specific abnormalities, which could be used for diagnosis, follow-up of treatment, and prognosis: the so-called liquid biopsy. Liquid biopsy is a minimally invasive approach and presents the sum of ctDNA from primary and secondary tumor sites. It has been possible not only to quantify the amount of ctDNA but also to identify (epi)genetic changes. Specific mutations in genes have been identified in the plasma of patients with several types of cancer, which highlights ctDNA as a possible cancer biomarker. However, achieving detectable concentrations of ctDNA in body fluids is not an easy task. ctDNA fragments present a short half-life, and there are no cut-off values to discriminate high and low ctDNA concentrations. Here, we discuss the use of ctDNA as a cancer biomarker, the main methodologies, the inherent difficulties, and the clinical predictive value of ctDNA.


Subject(s)
Circulating Tumor DNA , Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Humans , Liquid Biopsy , Mutation , Neoplasms/diagnosis , Neoplasms/genetics
3.
Life Sci ; 257: 118027, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32622951

ABSTRACT

AIM: Glioblastoma is an extremely aggressive glioma, resistant to radio and chemotherapy usually performed with temozolomide. One of the main reasons for glioblastoma resistance to conventional therapies is due to the presence of cancer stem-like cells. These cells could recapitulate some signaling pathways important for embryonic development, such as Sonic hedgehog. Here, we investigated if the inhibitor of the Sonic hedgehog pathway, cyclopamine, could potentiate the temozolomide effect in cancer stem-like cells and glioblastoma cell lines in vitro. MAIN METHODS: The viability of glioblastoma cells exposed to cyclopamine and temozolomide treatment was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay while the induction of apoptosis was assessed by western blot. The stemness properties of glioma cells were verified by clonogenic and differentiation assay and the expression of stem cell markers were measured by fluorescence microscopy and western blot. KEY FINDINGS: The glioblastoma viability was reduced by cyclopamine treatment. Cyclopamine potentiated temozolomide treatment in glioblastoma cell lines by inducing apoptosis through activation of caspase-3 cleaved. Conversely, the combined treatment of cyclopamine and temozolomide potentiated the stemness properties of glioblastoma cells by inducing the expression of SOX-2 and OCT-4. SIGNIFICANCE: Cyclopamine plays an effect on glioblastoma cell lines but also sensibilize them to temozolomide treatment. Thus, first-line treatment with Sonic hedgehog inhibitor followed by temozolomide could be used as a new therapeutic strategy for glioblastoma patients.


Subject(s)
Glioblastoma/metabolism , Hedgehog Proteins/metabolism , Veratrum Alkaloids/pharmacology , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Glioblastoma/drug therapy , Hedgehog Proteins/drug effects , Hedgehog Proteins/physiology , Humans , Neoplastic Stem Cells/metabolism , Octamer Transcription Factor-3 , SOXB1 Transcription Factors , Signal Transduction/drug effects , Temozolomide/pharmacology , Veratrum Alkaloids/metabolism
5.
Genet Mol Biol ; 39(3): 358-64, 2016.
Article in English | MEDLINE | ID: mdl-27575432

ABSTRACT

Approximately 185 million people worldwide are chronically infected with hepatitis C virus (HCV). The first-wave of approved NS3 protease inhibitors (PIs) were Telaprevir and Boceprevir, which are currently discontinued. Simeprevir is a second-wave PI incorporated into the Brazilian hepatitis C treatment protocol. Drug resistance plays a key role in patients' treatment regimen. Here, we developed a simple phenotypic assay to evaluate the impact of resistance mutations in HCV NS3 protease to PIs, using a protein expression vector containing wild type NS3 protease domain and NS4A co-factor. We analyzed the impact of five resistance mutations (T54A, V36M, V158I, V170I and T54S+V170I) against Telaprevir, Boceprevir and Simeprevir. Protein purifications were performed with low cost methodology, and enzymatic inhibition assays were measured by FRET. We obtained recombinant proteases with detectable activity, and IC50 and fold change values for the evaluated PIs were determined. The variant T54A showed the highest reduction of susceptibility for the PIs, while the other four variants exhibited lower levels of reduced susceptibility. Interestingly, V170I showed 3.2-fold change for Simeprevir, a new evidence about this variant. These results emphasize the importance of enzymatic assays in phenotypic tests to determine which therapeutic regimen should be implemented.

6.
J Acquir Immune Defic Syndr ; 57 Suppl 3: S197-201, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21857318

ABSTRACT

OBJECTIVE: To evaluate the polymorphisms and resistance mutations in gp41 HR1 region of HIV-1. METHODS: The study included 28 HIV-positive patients undergoing enfuvirtide (ENF) treatment or not from Porto Alegre, Rio Grande do Sul state, and Rio de Janeiro, Rio de Janeiro state, between 2006 and 2009. Resistance mutations and polymorphisms of the gp41 HR1 region were detected using the genomic DNA of 12 ENF-untreated patients and 16 patients in ENF treatment, encompassing subtypes B, C, and F1. Sample subtypes were determined by neighbor-joining phylogenetic analysis with a Kimura's two-parameter correction. RESULTS: A high prevalence of polymorphisms unrelated to resistance was observed. Among ENF-untreated patients, 16% showed mutations related with resistance. Among patients in ENF treatment, 50% had resistance-related mutations. Overall, 17% of all isolates showed the N42S polymorphism related to ENF hypersusceptibility. The presence of ENF resistance mutations in the group of treated patients reduced viral load. The V38A substitution was the most frequent among treatment-experienced patients followed by the G36D/E, N42D, and V38M substitutions. CONCLUSIONS: The V38A substitution in the gp41 HR region was the most common resistance mutation among ENF-treated patients and was associated with increased viral load.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral , HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/pharmacology , HIV Infections/virology , HIV-1/genetics , Peptide Fragments/pharmacology , Polymorphism, Genetic , Amino Acid Substitution/genetics , Anti-HIV Agents/therapeutic use , Cluster Analysis , Enfuvirtide , Genotype , HIV Envelope Protein gp41/therapeutic use , HIV Infections/drug therapy , HIV-1/isolation & purification , Humans , Molecular Sequence Data , Mutation, Missense , Peptide Fragments/therapeutic use , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...