Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 217(6): 1941-1955, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29588376

ABSTRACT

The multiciliated cell (MCC) is an evolutionarily conserved cell type, which in vertebrates functions to promote directional fluid flow across epithelial tissues. In the conducting airway, MCCs are generated by basal stem/progenitor cells and act in concert with secretory cells to perform mucociliary clearance to expel pathogens from the lung. Studies in multiple systems, including Xenopus laevis epidermis, murine trachea, and zebrafish kidney, have uncovered a transcriptional network that regulates multiple steps of multiciliogenesis, ultimately leading to an MCC with hundreds of motile cilia extended from their apical surface, which beat in a coordinated fashion. Here, we used a pool-based short hairpin RNA screening approach and identified TRRAP, an essential component of multiple histone acetyltransferase complexes, as a central regulator of MCC formation. Using a combination of immunofluorescence, signaling pathway modulation, and genomic approaches, we show that (a) TRRAP acts downstream of the Notch2-mediated basal progenitor cell fate decision and upstream of Multicilin to control MCC differentiation; and (b) TRRAP binds to the promoters and regulates the expression of a network of genes involved in MCC differentiation and function, including several genes associated with human ciliopathies.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cilia/metabolism , Nuclear Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Cell Lineage , Epigenesis, Genetic , Epithelial Cells/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Humans , Lung/cytology , RNA, Small Interfering/metabolism , Receptor, Notch2 , Signal Transduction , Transcription Factors
2.
Cell Rep ; 10(2): 239-52, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25558064

ABSTRACT

The balance and distribution of epithelial cell types is required to maintain tissue homeostasis. A hallmark of airway diseases is epithelial remodeling, leading to increased goblet cell numbers and an overproduction of mucus. In the conducting airway, basal cells act as progenitors for both secretory and ciliated cells. To identify mechanisms regulating basal cell fate, we developed a screenable 3D culture system of airway epithelial morphogenesis. We performed a high-throughput screen using a collection of secreted proteins and identified inflammatory cytokines that specifically biased basal cell differentiation toward a goblet cell fate, culminating in enhanced mucus production. We also demonstrate a specific requirement for Notch2 in cytokine-induced goblet cell metaplasia in vitro and in vivo. We conclude that inhibition of Notch2 prevents goblet cell metaplasia induced by a broad range of stimuli and propose Notch2 neutralization as a therapeutic strategy for preventing goblet cell metaplasia in airway diseases.


Subject(s)
Cytokines/pharmacology , Goblet Cells/drug effects , Lung/pathology , Receptor, Notch2/metabolism , Animals , Cell Culture Techniques , Cell Differentiation/drug effects , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Goblet Cells/cytology , Goblet Cells/metabolism , Hepatocyte Nuclear Factor 3-gamma/genetics , Hepatocyte Nuclear Factor 3-gamma/metabolism , Humans , Interleukin-13/genetics , Interleukin-13/metabolism , Interleukin-13/pharmacology , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-17/pharmacology , Lung/metabolism , Metaplasia , Mice , Mice, Inbred BALB C , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucin-5B/genetics , Mucin-5B/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...