Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 164: 105789, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39002829

ABSTRACT

Anxiety fluctuates across the human menstrual cycle, with symptoms worsening during phases of declining or low ovarian hormones. Similar findings have been observed across the rodent estrous cycle, however, the magnitude and robustness of these effects have not been meta-analytically quantified. We conducted a systematic review and meta-analysis of estrous cycle effects on anxiety-like behaviour (124 articles; k = 259 effect sizes). In both rats and mice, anxiety-like behaviour was higher during metestrus/diestrus (lower ovarian hormones) than proestrus (higher ovarian hormones) (g = 0.44 in rats, g = 0.43 in mice). There was large heterogeneity in the data, which was partially accounted for by strain, experimental task, and reproductive status. Nonetheless, the effect of estrous cycle on anxiety-like behaviour was highly robust, with the fail-safe N test revealing the effect would remain significant even if 21,388 additional studies yielded null results. These results suggest that estrous cycle should be accounted for in studies of anxiety in females. Doing so will facilitate knowledge about menstrual-cycle regulation of anxiety disorders in humans.

2.
Horm Behav ; 161: 105518, 2024 May.
Article in English | MEDLINE | ID: mdl-38422863

ABSTRACT

Benzodiazepines undermine the success of exposure therapy in humans with anxiety disorders, and impair the long-term memory of fear extinction (the laboratory basis of exposure therapy) in rodents. However, most rodent studies on fear extinction and benzodiazepines have been conducted in male rodents. In female rodents, the estrous cycle influences the consolidation of fear extinction memories and sensitivity to benzodiazepines. In addition, pregnancy leads to long-term changes in the neurobiological, hormonal, and behavioural features of fear extinction, as well as the responsivity to benzodiazepines. Therefore, the present experiments examined the impact of benzodiazepines on fear extinction in female rats with and without reproductive experience. Age-matched nulliparous (no reproductive experience) and primiparous (one prior reproductive experience; tested one-month post-weaning) rats received fear conditioning to a discrete cue. The next day, rats were administered the benzodiazepine diazepam (2 mg/kg, s.c), or vehicle, prior to or immediately after extinction training. Rats were then tested the next day, drug free, for extinction retention. Similar to previous findings in males, diazepam impaired extinction retention in both nulliparous and primiparous rats when administered either pre- or post-extinction training. These findings may have potential clinical implications as they suggest that benzodiazepine use in conjunction with exposure therapy may undermine long-term treatment success in women with and without reproductive experience, although this remains to be tested in human populations. Moreover, these findings are theoretically important when considered in light of previous studies showing dissociable mechanisms of fear extinction in females pre- versus post-pregnancy.


Subject(s)
Diazepam , Extinction, Psychological , Fear , Parity , Animals , Female , Fear/drug effects , Diazepam/pharmacology , Extinction, Psychological/drug effects , Rats , Pregnancy , Parity/physiology , Parity/drug effects , Anti-Anxiety Agents/pharmacology , Conditioning, Classical/drug effects , Rats, Sprague-Dawley
3.
Neurobiol Learn Mem ; 206: 107863, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995803

ABSTRACT

In female rats and humans, reproductive experience (i.e., pregnancy) alters the behavioral, hormonal and molecular substrates of fear extinction. Here, we assessed whether the role of a central neural substrate of fear extinction, the basolateral amygdala (BLA), also changes following reproductive experience. Nulliparous (virgin) and primiparous (one prior pregnancy) female rats received infusions of the GABAA agonist, muscimol, to temporarily inactivate the BLA prior to fear conditioning or extinction training. In follow up experiments, the BLA was also inactivated immediately after extinction training. BLA inactivation impaired the acquisition and expression of conditioned fear in both nulliparous and primiparous rats. In nulliparous rats, BLA inactivation prior to or immediately after extinction training impaired extinction retention. In contrast, in primiparous rats, BLA inactivation prior to or immediately after extinction training did not impair extinction retention, despite suppressing freezing during extinction training. These results suggest that, consistent with past findings in males, the BLA is a central component of the neural circuitry of fear acquisition and its extinction in virgin female rats. However, after pregnancy, female rats no longer depend on the BLA to extinguish fear, despite requiring the BLA to acquire conditioned fear. Given that fear extinction forms the basis of exposure therapy for anxiety disorders in humans, the present findings may have clinical implications. To improve the efficacy of exposure therapy for anxiety disorders, we may need to target different mechanisms in females dependent on their reproductive history.


Subject(s)
Basolateral Nuclear Complex , Extinction, Psychological , Male , Humans , Rats , Female , Animals , Extinction, Psychological/physiology , Conditioning, Classical/physiology , Fear/physiology , Amygdala/physiology , Basolateral Nuclear Complex/physiology
4.
Psychopharmacology (Berl) ; 240(12): 2515-2528, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37581635

ABSTRACT

OVERVIEW: Reproductive experience (pregnancy and motherhood) leads to long-term changes in the neurobiological and hormonal features of anxiety in rats and humans. The aim of this study was to examine whether reproductive experience alters the effects of two pharmacological treatments for anxiety, a benzodiazepine (diazepam) and a selective serotonin reuptake inhibitor (fluoxetine), on animal models of anxiety. METHODS: In Experiment 1, virgin (n = 47) and age-matched mother (n = 50) rats at 1-month post-weaning were injected with diazepam (1.3 mg/kg or 1.7 mg/kg, i.p.) or vehicle, in the proestrus (high estradiol/progesterone/allopregnanolone) or metestrus (low estradiol/progesterone/allopregnanolone) phase of the estrous cycle 30 min prior to the elevated plus maze (EPM). In Experiment 2, virgin (n = 25) and mother rats (n = 20) were administered fluoxetine (10 mg/kg) or vehicle for 2 weeks prior to being tested on a Pavlovian fear conditioning and extinction protocol, and the EPM. RESULTS: Replicating past research, in virgin rats, the low dose of diazepam produced anxiolytic-like effects in proestrus, but only the high dose was anxiolytic-like in metestrus. In contrast, in mother rats, both doses of diazepam were anxiolytic-like irrespective of estrous phase. Fluoxetine produced anxiogenic-like effects in virgin rats during fear extinction and the EPM, but had no behavioural effects in mothers. In contrast, fluoxetine increased plasma corticosterone levels measured 30-min post-EPM in mothers, but not virgin rats. CONCLUSIONS: Reproductive experience alters the dose responsivity and efficacy of common anti-anxiety medications in female rats. These findings highlight the importance of considering reproductive status in studies on anxiety and its treatment.


Subject(s)
Anti-Anxiety Agents , Diazepam , Pregnancy , Humans , Rats , Female , Animals , Diazepam/pharmacology , Fluoxetine/pharmacology , Fear , Corticosterone , Anti-Anxiety Agents/pharmacology , Progesterone/pharmacology , Extinction, Psychological , Pregnanolone/pharmacology , Anxiety/drug therapy , Estradiol/pharmacology
5.
Transl Psychiatry ; 13(1): 183, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253788

ABSTRACT

Fluctuations in ovarian steroids across the estrous and menstrual cycle in female rats and women, respectively, are associated with changes in anxiety. Pregnancy causes long-term changes to ovarian hormone release, yet research on estrous- and menstrual-related changes in anxiety has focused on reproductively inexperienced females. Therefore, this study assessed whether the impact of estrous and menstrual cycles on anxiety differs pre- versus post-motherhood in female rats (n = 32) and a community sample of women (n = 63). Estrous cycle phase altered anxiety-like behavior in virgin rats, but had no effect in age-matched mother rats tested 1-month post-weaning. In humans, menstrual cycle phase was associated with ecological momentary assessed anxiety and mood in non-mothers, but not mothers; although, the menstrual cycle × reproductive status interaction for anxiety, but not mood, was rendered non-significant with age and cycle length as covariates. These findings suggest that changes in anxiety coincident with cycling hormones is an evolutionarily conserved feature of the estrous and menstrual cycle in rats and women, which is mitigated following motherhood in both species. We identified several potential mechanisms for the observed dissociation in estrous cycle effects on anxiety. Compared to virgin rats, mother rats had a lower peak and blunted decline in circulating allopregnanolone during proestrus, upregulated GABAA receptor subunit (α1, α2, α5, α4, ß2) mRNA in the ventral hippocampus, and altered corticotropin-releasing hormone mRNA across the estrous cycle in the basolateral amygdala. Together, these findings suggest that the mechanisms underlying anxiety regulation undergo fundamental transformation following pregnancy in female rats and humans.


Subject(s)
Corticotropin-Releasing Hormone , Pregnanolone , Pregnancy , Rats , Female , Humans , Animals , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism , Anxiety , Menstrual Cycle , Estrous Cycle , Receptors, GABA-A
6.
Curr Psychiatry Rep ; 24(11): 697-707, 2022 11.
Article in English | MEDLINE | ID: mdl-36255558

ABSTRACT

PURPOSE OF REVIEW: Anxiety symptoms increase during the peri-menstrual phase of the menstrual cycle in people with anxiety disorders. Whether this reflects a heightened variant of normal menstrual-related changes in psychological states experienced by healthy (i.e. non-anxious) people is unknown. Moreover, menstrual-related change in anxiety symptoms is a poorly understood phenomenon, highlighting a need for pre-clinical models to aid mechanistic discovery. Here, we review recent evidence for menstrual effects on anxiety-like features in healthy humans as a counterpart to recent reviews that have focused on clinically anxious populations. We appraise the utility of rodent models to identify mechanisms of menstrual effects on anxiety and offer suggestions to harmonise methodological practices across species to advance knowledge in this field. RECENT FINDINGS: Consistent with reports in clinical populations, some evidence indicates anxiety symptoms increase during the peri-menstrual period in healthy people, although null results have been reported, and these effects are heterogeneous across studies and individuals. Studies in rats show robust increases in anxiety during analogous phases of the oestrous cycle. Studies in female rats are useful to identify the evolutionarily conserved biological mechanisms of menstrual-related changes in anxiety. Future experimental approaches in rats should model the heterogeneity observed in human studies to increase alignment across species and advance understanding of the individual factors that increase the propensity to experience menstrual-related changes in anxiety.


Subject(s)
Anxiety , Menstrual Cycle , Humans , Female , Rats , Animals , Anxiety/psychology , Menstrual Cycle/psychology , Anxiety Disorders/psychology
7.
Front Glob Womens Health ; 2: 742337, 2021.
Article in English | MEDLINE | ID: mdl-34977862

ABSTRACT

Reproductive experience leads to long-lasting changes in anxiety-like behaviour and fear extinction, the laboratory model of exposure therapy for anxiety disorders. For example, fear extinction is influenced by estrous cycle in nulliparous (no reproductive experience) female rats, but this effect is abolished in primiparous (one reproductive experience) females. It is unclear whether such changes are driven by pregnancy, maternal experience of caring for offspring during the postpartum period, or a combination of both experiences. The present study sought to determine the influence of maternal experience (i.e., exposure to pups and mother-pup interactions) on fear extinction in primiparous rats. In Experiment 1, we tested whether pup exposure is necessary to mitigate estrous effects on fear extinction in primiparous rats. Age-matched nulliparous rats, primiparous rats, and primiparous rats who experienced pregnancy but not pup exposure, underwent fear conditioning on day 1 (2 months post-parturition), extinction training during proestrus (high sex hormones) or metestrus (low sex hormones) on day 2, and extinction recall on day 3. Replicating past research, nulliparous rats showed impaired extinction recall when they were extinguished during metestrus compared to proestrus. In contrast, primiparous rats with and without pup exposure showed comparable extinction recall irrespective of estrous phase. In Experiment 2, we assessed whether naturally-occurring variation in mother-pup interactions predict future fear extinction performance and anxiety-like behaviour. During the first week of lactation, primiparous rats were measured for maternal behaviours toward pups. Primiparous rats were then tested on the light-dark box and elevated plus maze to measure anxiety-like behaviour and underwent a fear extinction protocol 1 month post-weaning. We found no significant correlations between maternal behaviour and fear extinction outcomes or anxiety-like behaviour. Our findings suggest that pregnancy, not maternal experience, mitigates the impact of estrous cycle on fear extinction. In addition, natural variation in maternal experience does not appear to contribute to variability in future fear extinction outcomes or anxiety-like behaviour in primiparous rats.

SELECTION OF CITATIONS
SEARCH DETAIL