Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Sci Food ; 8(1): 7, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245539

ABSTRACT

Food consumption play a crucial role in human life, yet conventional food production and consumption patterns can be detrimental to the environment. Thus, research and development has been directed towards alternative proteins, with edible insects being promising sources. Edible insects have been recognised for their sustainable benefits providing protein, with less emission of greenhouse gas, land and water usage compared to sources, such as beef, chicken, and dairy products. Among the over 2000 known edible insect species, only four, namely yellow mealworm (Tenebrio molitor), migratory locust/grasshopper (Locusta migratoria), grain mould beetle, also known as lesser mealworm which is a larval form of Alphitobius diaperinus (from the family of Tenebrionidae of darkling beetles) and house cricket (Acheta domesticus), are currently authorised in specific products through specific producers in the EU. The expansion of such foods into Western diets face challenges such as consumer barriers, gaps in microbiological and chemical safety hazard data during production and processing, and the potential for fraudulent supply chain activity. The main aim of this study was to map the supply chain, through interviews with personnel along the supply chain, coupled with searches for relevant publications and governmental documents. Thus, the main potential points of food safety and fraud along the edible insect supply chain were identified. Feed substrate was identified as the main area of concern regarding microbiological and chemical food safety and novel processing techniques were forecast to be of most concern for future fraudulent activity. Despite the on-going authorisation of insect species in many countries there are substantial food safety and authenticity information gaps in this industry that need to be addressed before edible insects can be viewed as a safe and sustainable protein sources by Western consumers.

2.
J Appl Microbiol ; 104(5): 1495-502, 2008 May.
Article in English | MEDLINE | ID: mdl-18194245

ABSTRACT

AIMS: To study the interaction between Bacillus spp. and contaminating Aspergillus flavus isolated strains from Thai fermented soybean in order to limit aflatoxin production. To study the detoxification of aflatoxin B(1) (AFB(1)) and ochratoxin A (OTA) by Bacillus spp. in order to find an efficient strain to remove these toxins. METHODS AND RESULTS: One A. flavus aflatoxin-producing strain and 23 isolates of Bacillus spp. were isolated from soybean and fresh Thua-nao collected from the north of Thailand. Inhibition studies of A. flavus and A. westerdijkiae NRRL 3174 (reference strain) growth by all isolates of Bacillus spp. were conducted by dual culture technique on agar plates. These isolates were also tested for AFB(1) and OTA detoxification ability on both solid and liquid media. Most of the strains were able to detoxify aflatoxin but only some of them could detoxify OTA. CONCLUSIONS: One Bacillus strain was able to inhibit growth of both Aspergillus strains and to remove both mycotoxins (decrease of 74% of AFB(1) and 92.5% of OTA). It was identified by ITS sequencing as Bacillus licheniformis. The OTA decrease was due to degradation in OTalpha. Another Bacillus strain inhibiting both Aspergillus growth and detoxifying 85% of AFB(1) was identified as B. subtilis. AFB(1) decrease has not been correlated to appearance of a degradation product. SIGNIFICANCE AND IMPACT OF THE STUDY: The possibility to reduce AFB(1) level by a strain from the natural flora is of great interest for the control of the quality of fermented soybean. Moreover, the same strain could be a source of efficient enzyme for OTA degradation in other food or feeds.


Subject(s)
Bacillus/isolation & purification , Bacillus/metabolism , Food Microbiology , Glycine max/microbiology , Mycotoxins/metabolism , Aflatoxin B1/analysis , Aflatoxin B1/metabolism , Antibiosis , Aspergillus flavus/physiology , Bacillus subtilis/isolation & purification , Bacillus subtilis/metabolism , Chromatography, High Pressure Liquid/methods , Fermentation , Mycotoxins/analysis , Ochratoxins/analysis , Ochratoxins/metabolism , Glycine max/toxicity , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...