Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Cells ; 13(2)2024 01 17.
Article in English | MEDLINE | ID: mdl-38247864

ABSTRACT

A major problem in SARS-CoV-2-infected patients is the massive tissue inflammation in certain target organs, including the lungs. Mast cells (MC), basophils (BA), and eosinophils (EO) are key effector cells in inflammatory processes. These cells have recently been implicated in the pathogenesis of SARS-CoV-2 infections. We explored coronavirus receptor (CoV-R) expression profiles in primary human MC, BA, and EO, and in related cell lines (HMC-1, ROSA, MCPV-1, KU812, and EOL-1). As determined using flow cytometry, primary MC, BA, and EO, and their corresponding cell lines, displayed the CoV-R CD13 and CD147. Primary skin MC and BA, as well as EOL-1 cells, also displayed CD26, whereas primary EO and the MC and BA cell lines failed to express CD26. As assessed using qPCR, most cell lines expressed transcripts for CD13, CD147, and ABL2, whereas ACE2 mRNA was not detectable, and CD26 mRNA was only identified in EOL-1 cells. We also screened for drug effects on CoV-R expression. However, dexamethasone, vitamin D, and hydroxychloroquine did not exert substantial effects on the expression of CD13, CD26, or CD147 in the cells. Together, MC, BA, and EO express distinct CoV-R profiles. Whether these receptors mediate virus-cell interactions and thereby virus-induced inflammation remains unknown at present.


Subject(s)
Dipeptidyl Peptidase 4 , Mast Cells , Humans , Dipeptidyl Peptidase 4/genetics , Receptors, Coronavirus , Basophils , Eosinophils , Inflammation
2.
Expert Rev Hematol ; 16(9): 659-670, 2023.
Article in English | MEDLINE | ID: mdl-37493441

ABSTRACT

INTRODUCTION: The Vienna Cancer Stem Cell Club (VCSCC) was launched by a group of scientists in Vienna in 2002. AREAS COVERED: Major aims of the VCSCC are to support research on cancer stem cells (CSC) in hematopoietic malignancies and to translate CSC-related markers and targets into clinical application. A primary focus of research in the VCSCC is the leukemic stem cell (LSC). Between 2013 and 2021, members of the VCSCC established a special research program on myeloproliferative neoplasms and since 2008, members of the VCSCC run the Ludwig Boltzmann Institute for Hematology and Oncology. In all these years, the VCSCC provided a robust intellectual platform for translational hematology and LSC research in Vienna. Furthermore, the VCSCC interacts with several national and international study groups and societies in the field. Representatives of the VCSCC also organized a number of international meetings and conferences on neoplastic stem cells, including LSC, in the past 15 years, and contributed to the definition and classification of CSC/LSC and related pre-malignant and malignant conditions. EXPERT OPINION: The VCSCC will continue to advance the field and to develop LSC-detecting and LSC-eradicating concepts through which diagnosis, prognostication, and therapy of blood cancer patients should improve.


Subject(s)
Hematologic Neoplasms , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Neoplastic Stem Cells/pathology , Hematologic Neoplasms/pathology , Forecasting
3.
Am J Cancer Res ; 13(2): 355-378, 2023.
Article in English | MEDLINE | ID: mdl-36895976

ABSTRACT

Systemic mastocytosis (SM) is a hematopoietic neoplasm with a complex pathology and a variable clinical course. Clinical symptoms result from organ infiltration by mast cells (MC) and the effects of pro-inflammatory mediators released during MC activation. In SM, growth and survival of MC are triggered by various oncogenic mutant-forms of the tyrosine kinase KIT. The most prevalent variant, D816V, confers resistance against various KIT-targeting drugs, including imatinib. We examined the effects of two novel promising KIT D816V-targeting drugs, avapritinib and nintedanib, on growth, survival, and activation of neoplastic MC and compared their activity profiles with that of midostaurin. Avapritinib was found to suppress growth of HMC-1.1 cells (KIT V560G) and HMC-1.2 cells (KIT V560G + KIT D816V) with comparable IC50 values (0.1-0.25 µM). In addition, avapritinib was found to inhibit the proliferation of ROSAKIT WT cells, (IC50: 0.1-0.25 µM), ROSAKIT D816V cells (IC50: 1-5 µM), and ROSAKIT K509I cells (IC50: 0.1-0.25 µM). Nintedanib exerted even stronger growth-inhibitory effects in these cells (IC50 in HMC-1.1: 0.001-0.01 µM; HMC-1.2: 0.25-0.5 µM; ROSAKIT WT: 0.01-0.1 µM; ROSAKIT D816V: 0.5-1 µM; ROSAKIT K509I: 0.01-0.1 µM). Avapritinib and nintedanib also suppressed the growth of primary neoplastic cells in most patients with SM examined (avapritinib IC50: 0.5-5 µM; nintedanib IC50: 0.1-5 µM). Growth-inhibitory effects of avapritinib and nintedanib were accompanied by signs of apoptosis and decreased surface expression of the transferrin receptor CD71 in neoplastic MC. Finally, we were able to show that avapritinib counteracts IgE-dependent histamine secretion in basophils and MC in patients with SM. These effects of avapritinib may explain the rapid clinical improvement seen during treatment with this KIT inhibitor in patients with SM. In conclusion, avapritinib and nintedanib are new potent inhibitors of growth and survival of neoplastic MC expressing various KIT mutant forms, including D816V, V560G, and K509I, which favors the clinical development and application of these new drugs in advanced SM. Avapritinib is of particular interest as it also blocks mediator secretion in neoplastic MC.

5.
Am J Hematol ; 98(5): 770-783, 2023 05.
Article in English | MEDLINE | ID: mdl-36814396

ABSTRACT

Myeloproliferative neoplasms (MPN) are characterized by uncontrolled expansion of myeloid cells, disease-related mutations in certain driver-genes including JAK2, CALR, and MPL, and a substantial risk to progress to secondary acute myeloid leukemia (sAML). Although behaving as stem cell neoplasms, little is known about disease-initiating stem cells in MPN. We established the phenotype of putative CD34+ /CD38- stem cells and CD34+ /CD38+ progenitor cells in MPN. A total of 111 patients with MPN suffering from polycythemia vera, essential thrombocythemia, or primary myelofibrosis (PMF) were examined. In almost all patients tested, CD34+ /CD38- stem cells expressed CD33, CD44, CD47, CD52, CD97, CD99, CD105, CD117, CD123, CD133, CD184, CD243, and CD274 (PD-L1). In patients with PMF, MPN stem cells often expressed CD25 and sometimes also CD26 in an aberrant manner. MPN stem cells did not exhibit substantial amounts of CD90, CD273 (PD-L2), CD279 (PD-1), CD366 (TIM-3), CD371 (CLL-1), or IL-1RAP. The phenotype of CD34+ /CD38- stem cells did not change profoundly during progression to sAML. The disease-initiating capacity of putative MPN stem cells was confirmed in NSGS mice. Whereas CD34+ /CD38- MPN cells engrafted in NSGS mice, no substantial engraftment was produced by CD34+ /CD38+ or CD34- cells. The JAK2-targeting drug fedratinib and the BRD4 degrader dBET6 induced apoptosis and suppressed proliferation in MPN stem cells. Together, MPN stem cells display a unique phenotype, including cytokine receptors, immune checkpoint molecules, and other clinically relevant target antigens. Phenotypic characterization of neoplastic stem cells in MPN and sAML should facilitate their enrichment and the development of stem cell-eradicating (curative) therapies.


Subject(s)
Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Polycythemia Vera , Animals , Mice , Calreticulin/genetics , Janus Kinase 2/genetics , Mutation , Myeloproliferative Disorders/genetics , Neoplastic Stem Cells , Nuclear Proteins/genetics , Phenotype , Polycythemia Vera/genetics , Transcription Factors/genetics , Humans
6.
Am J Hematol ; 97(9): 1215-1225, 2022 09.
Article in English | MEDLINE | ID: mdl-35794848

ABSTRACT

In most patients with chronic myeloid leukemia (CML) clonal cells can be kept under control by BCR::ABL1 tyrosine kinase inhibitors (TKI). However, overt resistance or intolerance against these TKI may occur. We identified the epigenetic reader BRD4 and its downstream-effector MYC as growth regulators and therapeutic targets in CML cells. BRD4 and MYC were found to be expressed in primary CML cells, CD34+ /CD38- leukemic stem cells (LSC), and in the CML cell lines KU812, K562, KCL22, and KCL22T315I . The BRD4-targeting drug JQ1 was found to suppress proliferation in KU812 cells and primary leukemic cells in the majority of patients with chronic phase CML. In the blast phase of CML, JQ1 was less effective. However, the BRD4 degrader dBET6 was found to block proliferation and/or survival of primary CML cells in all patients tested, including blast phase CML and CML cells exhibiting the T315I variant of BCR::ABL1. Moreover, dBET6 was found to block MYC expression and to synergize with BCR::ABL1 TKI in inhibiting the proliferation in the JQ1-resistant cell line K562. Furthermore, BRD4 degradation was found to overcome osteoblast-induced TKI resistance of CML LSC in a co-culture system and to block interferon-gamma-induced upregulation of the checkpoint antigen PD-L1 in LSC. Finally, dBET6 was found to suppress the in vitro survival of CML LSC and their engraftment in NSG mice. Together, targeting of BRD4 and MYC through BET degradation sensitizes CML cells against BCR::ABL1 TKI and is a potent approach to overcome multiple forms of drug resistance in CML LSC.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Nuclear Proteins , Animals , Blast Crisis/drug therapy , Cell Cycle Proteins , Cell Line, Tumor , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Nuclear Proteins/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-myc , Stem Cells , Transcription Factors/genetics
7.
Front Vet Sci ; 8: 755258, 2021.
Article in English | MEDLINE | ID: mdl-34957277

ABSTRACT

Mast cell neoplasms are one of the most frequently diagnosed malignancies in dogs. The clinical picture, course, and prognosis vary substantially among patients, depending on the anatomic site, grade and stage of the disease. The most frequently involved organ is the skin, followed by hematopoietic organs (lymph nodes, spleen, liver, and bone marrow) and mucosal sites of the oral cavity and the gastrointestinal tract. In cutaneous mast cell tumors, several grading and staging systems have been introduced. However, no comprehensive classification and no widely accepted diagnostic criteria have been proposed to date. To address these open issues and points we organized a Working Conference on canine mast cell neoplasms in Vienna in 2019. The outcomes of this meeting are summarized in this article. The proposed classification includes cutaneous mast cell tumors and their sub-variants defined by grading- and staging results, mucosal mast cell tumors, extracutaneous/extramucosal mast cell tumors without skin involvement, and mast cell leukemia (MCL). For each of these entities, diagnostic criteria are proposed. Moreover, we have refined grading and staging criteria for mast cell neoplasms in dogs based on consensus discussion. The criteria and classification proposed in this article should greatly facilitate diagnostic evaluation and prognostication in dogs with mast cell neoplasms and should thereby support management of these patients in daily practice and the conduct of clinical trials.

8.
Leukemia ; 35(11): 3176-3187, 2021 11.
Article in English | MEDLINE | ID: mdl-33785864

ABSTRACT

Chronic myelomonocytic leukemia (CMML) is a stem cell-derived neoplasm characterized by dysplasia, uncontrolled expansion of monocytes, and substantial risk to transform to secondary acute myeloid leukemia (sAML). So far, little is known about CMML-initiating cells. We found that leukemic stem cells (LSC) in CMML reside in a CD34+/CD38- fraction of the malignant clone. Whereas CD34+/CD38- cells engrafted NSGS mice with overt CMML, no CMML was produced by CD34+/CD38+ progenitors or the bulk of CD34- monocytes. CMML LSC invariably expressed CD33, CD117, CD123 and CD133. In a subset of patients, CMML LSC also displayed CD52, IL-1RAP and/or CLL-1. CMML LSC did not express CD25 or CD26. However, in sAML following CMML, the LSC also expressed CD25 and high levels of CD114, CD123 and IL-1RAP. No correlations between LSC phenotypes, CMML-variant, mutation-profiles, or clinical course were identified. Pre-incubation of CMML LSC with gemtuzumab-ozogamicin or venetoclax resulted in decreased growth and impaired engraftment in NSGS mice. Together, CMML LSC are CD34+/CD38- cells that express a distinct profile of surface markers and target-antigens. During progression to sAML, LSC acquire or upregulate certain cytokine receptors, including CD25, CD114 and CD123. Characterization of CMML LSC should facilitate their enrichment and the development of LSC-eradicating therapies.


Subject(s)
Antigens, CD34/immunology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myelomonocytic, Chronic/complications , Neoplastic Stem Cells/pathology , Phenotype , Aged , Aged, 80 and over , Animals , Antigens, CD34/metabolism , Apoptosis , Case-Control Studies , Cell Proliferation , Female , Humans , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Prognosis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Cont Lens Anterior Eye ; 43(5): 507-511, 2020 10.
Article in English | MEDLINE | ID: mdl-32143961

ABSTRACT

PURPOSE: Since tear film stability can be affected by fluorescein, the Dry Eye Workshop (DEWSII) recommended non-invasive measurement of tear breakup time (NIBUT). The aim of this study was to investigate the agreement and repeatability of four different instruments in the measurement of NIBUT. METHODS: 72 participants (mean 24.2 ± 3.6 years) were recruited for this multi-centre, cross-sectional study. NIBUT was measured three times from one eye using each of the instruments in randomized order on two separate sessions during a day, separated by at least 2 h. NIBUT was performed at three sites (Switzerland, Germany and UK) using three subjective instruments, Tearscope Plus (Keeler, Windsor, UK) (TS), Polaris (bon Optic, Lübeck, Germany) (POL), EasyTear Viewplus (Easytear, Rovereto, Italy) (ET) and the objective Keratograph 5 M (Oculus Optikgeräte GmbH, Wetzlar, Germany) (KER). As the latter instrument only analyses for 24 s, all data was capped at this value. RESULTS: NIBUT measurements (average of both sessions) between the four instruments were not statistically significantly different: TS (median 10.4, range 2.0-24.0 s), POL (10.1, 1.0-24.0 s), ET (10.6, 1.0-24.0 s) and KER (11.1, 2.6-24.0 s) (p = 0.949). The objective KER measures were on average (1.2 s ± 9.6 s, 95 % confidence interval) greater than the subjective evaluations of NIBUT with the other instruments (mean difference 0.4 s ± 7.7 s, 95 % confidence interval), resulting in a higher limits of agreement. The slope was -0.08 to 0.11 indicating no bias in the difference between instruments with the magnitude of the NIBUT. Repeated measurements from the two sessions were not significantly different for TS (p = 0.584), POL (p = 0.549), ET (p = 0.701) or KER (p = 0.261). CONCLUSIONS: The four instruments evaluated for their measurement of tear stability were reasonably repeatable and give similar average results.


Subject(s)
Dry Eye Syndromes , Tears , Cross-Sectional Studies , Dry Eye Syndromes/diagnosis , Fluorescein , Humans , Vision Tests
10.
Vet Comp Oncol ; 17(4): 553-561, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31286638

ABSTRACT

The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib is effective in the treatment of human chronic lymphocytic leukaemia and mantle cell lymphoma. Recent data have shown that ibrutinib also blocks IgE-dependent activation and histamine release in human basophils (BAs) and mast cells (MCs). The aim of this study was to investigate whether BTK serves as a novel therapeutic target in canine mast cell tumours (MCTs). We evaluated the effects of ibrutinib on two canine MC lines, C2 and NI-1 and on primary MCs obtained from canine MCTs (n = 3). Using flow cytometry, we found that ibrutinib suppresses phosphorylation of BTK and of downstream STAT5 in both MC lines. In addition, ibrutinib decreased proliferation of neoplastic MCs, with IC50 values ranging between 0.1 and 1 µM in primary MCT cells and between 1 and 3 µM in C2 and NI-1 cells. In C2 cells, the combination "ibrutinib + midostaurin" produced synergistic growth-inhibitory effects. At higher concentrations, ibrutinib also induced apoptosis in both MC lines. Finally, ibrutinib was found to suppress IgE-dependent histamine release in primary MCT cells, with IC50 values ranging from 0.05 to 0.1 µM in NI-1 cells, and from 0.05 to 1 µM in primary MCT cells. In summary, ibrutinib exerts anti-proliferative effects in canine neoplastic MCs and counteracts IgE-dependent histamine release in these cells. Based on our data, ibrutinib may be considered as a novel therapeutic agent for the treatment of canine MCT. The value of BTK inhibition in canine MCT patients remains to be elucidated in clinical trials.


Subject(s)
Cell Proliferation/drug effects , Dog Diseases/drug therapy , Histamine/metabolism , Mastocytoma/veterinary , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dogs , Gene Expression Regulation, Neoplastic/drug effects , Immunoglobulin E/pharmacology , Mastocytoma/drug therapy , Piperidines , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism
11.
Vet Comp Oncol ; 17(1): 1-10, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30136349

ABSTRACT

In humans, advanced mast cell (MC) neoplasms are rare malignancies with a poor prognosis. Only a few preclinical models are available, and current treatment options are limited. In dogs, MC neoplasms are the most frequent malignant skin tumours. Unlike low-grade MC neoplasms, high-grade MC disorders usually have a poor prognosis with short survival. In both species, neoplastic MCs display activating KIT mutations, which are considered to contribute to disease evolution. Therefore, tyrosine kinase inhibitors against KIT have been developed. Unfortunately, clinical responses are unpredictable and often transient, which remains a clinical challenge in both species. Therefore, current efforts focus on the development of new improved treatment strategies. The field of comparative oncology may assist in these efforts and accelerate human and canine research regarding diagnosis, prognostication, and novel therapies. In this article, we review the current status of comparative oncology approaches and perspectives in the field of MC neoplasms.


Subject(s)
Mastocytoma/veterinary , Animals , Antineoplastic Agents/therapeutic use , Dog Diseases/drug therapy , Dogs , Humans , Mastocytoma/classification , Mastocytoma/drug therapy , Species Specificity
12.
Haematologica ; 103(11): 1760-1771, 2018 11.
Article in English | MEDLINE | ID: mdl-29976735

ABSTRACT

Mastocytosis is a term used to denote a group of rare diseases characterized by an abnormal accumulation of neoplastic mast cells in various tissues and organs. In most patients with systemic mastocytosis, the neoplastic cells carry activating mutations in KIT Progress in mastocytosis research has long been hindered by the lack of suitable in vitro models, such as permanent human mast cell lines. In fact, only a few human mast cell lines are available to date: HMC-1, LAD1/2, LUVA, ROSA and MCPV-1. The HMC-1 and LAD1/2 cell lines were derived from patients with mast cell leukemia. By contrast, the more recently established LUVA, ROSA and MCPV-1 cell lines were derived from CD34+ cells of non-mastocytosis donors. While some of these cell lines (LAD1/2, LUVA, ROSAKIT WT and MCPV-1) do not harbor KIT mutations, HMC-1 and ROSAKIT D816V cells exhibit activating KIT mutations found in mastocytosis and have thus been used to study disease pathogenesis. In addition, these cell lines are increasingly employed to validate new therapeutic targets and to screen for effects of new targeted drugs. Recently, the ROSAKIT D816V subclone has been successfully used to generate a unique in vivo model of advanced mastocytosis by injection into immunocompromised mice. Such a model may allow in vivo validation of data obtained in vitro with targeted drugs directed against mastocytosis. In this review, we discuss the major characteristics of all available human mast cell lines, with particular emphasis on the use of HMC-1 and ROSAKIT D816V cells in preclinical therapeutic research in mastocytosis.


Subject(s)
Cell Line, Tumor , Mast Cells , Mastocytosis, Systemic , Models, Biological , Animals , Cell Line, Tumor/metabolism , Cell Line, Tumor/pathology , Humans , Mast Cells/metabolism , Mast Cells/pathology , Mastocytosis, Systemic/genetics , Mastocytosis, Systemic/metabolism , Mastocytosis, Systemic/pathology
13.
Wien Klin Wochenschr ; 130(17-18): 517-529, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30006759

ABSTRACT

In 2008 the Ludwig Boltzmann Cluster Oncology (LBC ONC) was established on the basis of two previous Ludwig Boltzmann Institutes working in the field of hematology and cancer research. The general aim of the LBC ONC is to improve treatment of hematopoietic neoplasms by eradicating cancer-initiating and disease-propagating cells, also known as leukemic stem cells (LSC) in the context of leukemia. In a first phase, the LBC ONC characterized the phenotype and molecular aberration profiles of LSC in various malignancies. The LSC phenotypes were established in acute and chronic myeloid leukemia, in acute lymphoblastic leukemia and in chronic lymphocytic leukemia. In addition, the concept of preleukemic (premalignant) neoplastic stem cells (pre-L-NSC) was coined by the LBC ONC and was tested in myelodysplastic syndromes and myeloproliferative neoplasms. Phenotypic characterization of LSC provided a solid basis for their purification and for the characterization of specific target expression profiles. In a second phase, molecular markers and targets were validated. This second phase is ongoing and should result in the development of new diagnostics parameters and novel, more effective, LSC-eradicating, treatment strategies; however, many issues still remain to be solved, such as sub-clonal evolution, LSC niche interactions, immunologic control of LSC, and LSC resistance. In the forthcoming years, the LBC ONC will concentrate on developing LSC-eradicating strategies, with special focus on LSC resistance, precision medicine and translation of LSC-eradicating concepts into clinical application.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Neoplastic Stem Cells
14.
Haematologica ; 103(5): 799-809, 2018 05.
Article in English | MEDLINE | ID: mdl-29439183

ABSTRACT

Systemic mastocytosis is a complex disease defined by abnormal growth and accumulation of neoplastic mast cells in various organs. Most patients exhibit a D816V-mutated variant of KIT, which confers resistance against imatinib. Clinical problems in systemic mastocytosis arise from mediator-related symptoms and/or organ destruction caused by malignant expansion of neoplastic mast cells and/or other myeloid cells in various organ systems. DCC-2618 is a spectrum-selective pan KIT and PDGFRA inhibitor which blocks KIT D816V and multiple other kinase targets relevant to systemic mastocytosis. We found that DCC-2618 inhibits the proliferation and survival of various human mast cell lines (HMC-1, ROSA, MCPV-1) as well as primary neoplastic mast cells obtained from patients with advanced systemic mastocytosis (IC50 <1 µM). Moreover, DCC-2618 decreased growth and survival of primary neoplastic eosinophils obtained from patients with systemic mastocytosis or eosinophilic leukemia, leukemic monocytes obtained from patients with chronic myelomonocytic leukemia with or without concomitant systemic mastocytosis, and blast cells obtained from patients with acute myeloid leukemia. Furthermore, DCC-2618 was found to suppress the proliferation of endothelial cells, suggesting additional drug effects on systemic mastocytosis-related angiogenesis. Finally, DCC-2618 was found to downregulate IgE-mediated histamine release from basophils and tryptase release from mast cells. Together, DCC-2618 inhibits growth, survival and activation of multiple cell types relevant to advanced systemic mastocytosis. Whether DCC-2618 is effective in vivo in patients with advanced systemic mastocytosis is currently under investigation in clinical trials.


Subject(s)
Cell Proliferation/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mast Cells/pathology , Mastocytosis, Systemic/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Aged , Aged, 80 and over , Female , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Male , Mast Cells/drug effects , Mast Cells/metabolism , Mastocytosis, Systemic/drug therapy , Mastocytosis, Systemic/metabolism , Middle Aged , Mutation , Tumor Cells, Cultured
15.
Vet Comp Oncol ; 16(1): 55-68, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28397975

ABSTRACT

BACKGROUND: Mastocytoma are frequently diagnosed cutaneous neoplasms in dogs. In non-resectable mastocytoma patients, novel targeted drugs are often applied. The transcription factor STAT5 has been implicated in the survival of human neoplastic mast cells (MC). Our study evaluated the JAK2/STAT5 pathway as a novel target in canine mastocytoma. MATERIALS AND METHODS: We employed inhibitors of JAK2 (R763, TG101348, AZD1480, ruxolitinib) and STAT5 (pimozide, piceatannol) and evaluated their effects on 2 mastocytoma cell lines, C2 and NI-1. RESULTS: Activated JAK2 and STAT5 were detected in both cell lines. The drugs applied were found to inhibit proliferation and survival in these cells with the following rank-order of potency: R763 > TG101348 > AZD1480 > pimozide > ruxolitinib > piceatannol. Moreover, synergistic anti-neoplastic effects were obtained by combining pimozide with KIT-targeting drugs (toceranib, masitinib, nilotinib, midostaurin) in NI-1 cells. CONCLUSION: The JAK2/STAT5 pathway is a novel potential target of therapy in canine mastocytoma.


Subject(s)
Dog Diseases/metabolism , Janus Kinase 2/metabolism , Mastocytoma/veterinary , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dog Diseases/drug therapy , Dogs , Flow Cytometry/veterinary , Janus Kinase 2/antagonists & inhibitors , Mastocytoma/drug therapy , Mastocytoma/metabolism , Nitriles , Norbornanes/pharmacology , Pimozide/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrrolidines/pharmacology , STAT5 Transcription Factor/antagonists & inhibitors , Stilbenes/pharmacology , Sulfonamides/pharmacology
16.
Clin Cancer Res ; 22(8): 2051-61, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26607600

ABSTRACT

PURPOSE: In chronic myelogenous leukemia (CML), leukemic stem cells (LSC) represent a critical target of therapy. However, little is known about markers and targets expressed by LSCs. The aim of this project was to identify novel relevant markers of CML LSCs. EXPERIMENTAL DESIGN: CML LSCs were examined by flow cytometry, qPCR, and various bioassays. In addition, we examined the multipotent CD25(+)CML cell line KU812. RESULTS: In contrast to normal hematopoietic stem cells, CD34(+)/CD38(-)CML LSCs expressed the IL-2 receptor alpha chain, IL-2RA (CD25). STAT5 was found to induce expression of CD25 in Lin(-)/Sca-1(+)/Kit(+)stem cells in C57Bl/6 mice. Correspondingly, shRNA-induced STAT5 depletion resulted in decreased CD25 expression in KU812 cells. Moreover, the BCR/ABL1 inhibitors nilotinib and ponatinib were found to decrease STAT5 activity and CD25 expression in KU812 cells and primary CML LSCs. A CD25-targeting shRNA was found to augment proliferation of KU812 cellsin vitroand their engraftmentin vivoin NOD/SCID-IL-2Rγ(-/-)mice. In drug-screening experiments, the PI3K/mTOR blocker BEZ235 promoted the expression of STAT5 and CD25 in CML cells. Finally, we found that BEZ235 produces synergistic antineoplastic effects on CML cells when applied in combination with nilotinib or ponatinib. CONCLUSIONS: CD25 is a novel STAT5-dependent marker of CML LSCs and may be useful for LSC detection and LSC isolation in clinical practice and basic science. Moreover, CD25 serves as a growth regulator of CML LSCs, which may have biologic and clinical implications and may pave the way for the development of new more effective LSC-eradicating treatment strategies in CML.


Subject(s)
Interleukin-2 Receptor alpha Subunit/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Neoplastic Stem Cells/metabolism , STAT5 Transcription Factor/metabolism , Animals , Antineoplastic Agents/pharmacology , Biomarkers , Cell Line, Tumor , Disease Models, Animal , Drug Design , Drug Synergism , Gene Expression , Gene Expression Regulation, Leukemic/drug effects , Genes, abl , Heterografts , Humans , Immunophenotyping , Interleukin-2 Receptor alpha Subunit/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Protein Kinase Inhibitors/pharmacology , STAT5 Transcription Factor/genetics
17.
Nature ; 525(7570): 543-547, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26367798

ABSTRACT

Following the discovery of BRD4 as a non-oncogene addiction target in acute myeloid leukaemia (AML), bromodomain and extra terminal protein (BET) inhibitors are being explored as a promising therapeutic avenue in numerous cancers. While clinical trials have reported single-agent activity in advanced haematological malignancies, mechanisms determining the response to BET inhibition remain poorly understood. To identify factors involved in primary and acquired BET resistance in leukaemia, here we perform a chromatin-focused RNAi screen in a sensitive MLL-AF9;Nras(G12D)-driven AML mouse model, and investigate dynamic transcriptional profiles in sensitive and resistant mouse and human leukaemias. Our screen shows that suppression of the PRC2 complex, contrary to effects in other contexts, promotes BET inhibitor resistance in AML. PRC2 suppression does not directly affect the regulation of Brd4-dependent transcripts, but facilitates the remodelling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggers acute MYC repression in human leukaemias regardless of their sensitivity, resistant leukaemias are uniformly characterized by their ability to rapidly restore MYC transcription. This process involves the activation and recruitment of WNT signalling components, which compensate for the loss of BRD4 and drive resistance in various cancer models. Dynamic chromatin immunoprecipitation sequencing and self-transcribing active regulatory region sequencing of enhancer profiles reveal that BET-resistant states are characterized by remodelled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. Together, our results identify and validate WNT signalling as a driver and candidate biomarker of primary and acquired BET resistance in leukaemia, and implicate the rewiring of transcriptional programs as an important mechanism promoting resistance to BET inhibitors and, potentially, other chromatin-targeted therapies.


Subject(s)
Azepines/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Transcription, Genetic/drug effects , Triazoles/pharmacology , Animals , Cell Cycle Proteins , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Genes, myc/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic/genetics , Wnt Signaling Pathway/drug effects
18.
Am J Cancer Res ; 5(2): 560-74, 2015.
Article in English | MEDLINE | ID: mdl-25973297

ABSTRACT

Advanced colorectal cancer is characterized by uncontrolled growth and resistance against anti-cancer agents, including ErbB inhibitors. Recent data suggest that cancer stem cells (CSC) are particularly resistant. These cells may reside within a CD133+ fraction of the malignant cells. Using HCT116 cells we explored the role of CD133 and other CSC markers in drug resistance in colon cancer cells. CD133+ cells outnumbered CD133- cells over time in long-term culture. Both populations displayed the KRAS mutation 38G > A and an almost identical target profile, including EGFR/ErbB1, ErbB2, and ErbB4. Microarray analyses and flow cytometry identified CD26 as additional CSC marker co-expressed on CD133+ cells. However, knock-down of CD133 or CD26 did not affect short-term growth of HCT116 cells, and both cell-populations were equally resistant to various targeted drugs except irreversible ErbB inhibitors, which blocked growth and ERK1/2 phosphorylation in CD133- cells more efficiently than in CD133+ cells. Moreover, the MEK inhibitor AS703026 was found to overcome resistance against ErbB blockers in CD133+ cells. Together, CD133 and CD26 are markers of long-term growth and resistance to ErbB blockers in HCT116 cells, which may be mediated by constitutive ERK activity.

19.
Ann Hematol ; 94(2): 223-31, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25209843

ABSTRACT

Mast cell leukemia (MCL) is a rare, life-threatening malignancy defined by a substantial increase in neoplastic mast cells (MCs) in bone marrow (BM) smears, drug-resistance, and a poor prognosis. In most patients, the survival time is less than 1 year. However, exceptional cases may present with a less malignant course. We report on a 49-year-old female patient with MCL diagnosed in 2013. In February 2013, first symptoms, including flushing, headache, and diarrhea, were recorded. In addition, mild anemia was detected. The disease was characterized by a massive increase in well-granulated, mature, and often spindle-shaped MCs (80 %) in BM smears. The serum tryptase level amounted to 332 ng/mL. Like in most other MCL patients, no skin lesions were detected. However, unlike in other patients, tryptase levels remained stable, and no other signs or symptoms of MCL-induced organ damage were found. Sequencing studies revealed an isolated S476I point mutation in KIT but no mutation in codon 816. The patient received histamine receptor blockers but refused cytoreductive therapy. After 9 months, still no progression or organ damage was detected. However, progression with transformation to acute MCL occurred after 12 months. We propose that the chronic type of MCL with stable conditions, absence of organ damage, and a mature MC morphology is recognized as a distinct entity that should be distinguished from the acute variant of MCL.


Subject(s)
Leukemia, Mast-Cell/genetics , Mast Cells/metabolism , Mutation, Missense , Proto-Oncogene Proteins c-kit/genetics , Bone Marrow Examination , Cell Proliferation/drug effects , Chronic Disease , Female , Humans , Leukemia, Mast-Cell/pathology , Mast Cells/drug effects , Mast Cells/pathology , Middle Aged , Protein Kinase Inhibitors/pharmacology
20.
Oncotarget ; 5(5): 1198-211, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24681707

ABSTRACT

Heat shock proteins (Hsp) are increasingly employed as therapeutic targets in oncology. We have shown that Hsp32, also known as heme oxygenase-1 (HO-1), serves as survival factor and potential target in Ph+ chronic myeloid leukemia. We here report that primary cells and cell lines derived from patients with acute lymphoblastic leukemia (ALL) express Hsp32 mRNA and the Hsp32 protein in a constitutive manner. Highly enriched CD34+/CD38- ALL stem cells also expressed Hsp32. Two Hsp32-targeting drugs, pegylated zinc protoporphyrine (PEG-ZnPP) and styrene maleic acid-micelle-encapsulated ZnPP (SMA-ZnPP), induced apoptosis and growth arrest in the BCR/ABL1+ cell lines, in Ph- lymphoblastic cell lines and in primary Ph+ and Ph- ALL cells. The effects of PEG-ZnPP and SMA-ZnPP on growth of leukemic cells were dose-dependent. In Ph+ ALL, major growth-inhibitory effects of the Hsp32-targeting drugs were observed in imatinib-sensitive and imatinib-resistant cells. Hsp32-targeting drugs were found to synergize with imatinib, nilotinib, and bendamustine in producing growth inhibition and apoptosis in Ph+ ALL cells. A siRNA against Hsp32 was found to inhibit growth and survival of ALL cells and to synergize with imatinib in suppressing the growth of ALL cells. In conclusion, Hsp32 is an essential survival factor and potential new target in ALL.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Heme Oxygenase-1/genetics , Maleates/pharmacology , Metalloporphyrins/pharmacology , Piperazines/pharmacology , Polyethylene Glycols/pharmacology , Polystyrenes/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Pyrimidines/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Bendamustine Hydrochloride , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Down-Regulation/drug effects , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl/antagonists & inhibitors , Gene Knockdown Techniques , Heme Oxygenase-1/metabolism , Humans , Imatinib Mesylate , Nitrogen Mustard Compounds/pharmacology , Philadelphia Chromosome , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...