Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Praxis (Bern 1994) ; 113(2): 34-43, 2024 Feb.
Article in German | MEDLINE | ID: mdl-38536191

ABSTRACT

INTRODUCTION: The «Recommendations for the Diagnosis and Treatment of Behavioral and Psychological Symptoms of Dementia (BPSD)¼ were developed in parallel with the Swiss National Dementia Strategy 2014-2019 under the auspices of the Swiss Society for Geriatric Psychiatry and Psychotherapy (SGAP) and mark the beginning of a series of recommendations for geriatric psychiatric disorders. They depict the evidence-based state of knowledge about diagnostics and therapy, based on the clinical experience of the experts, and are designed for interprofessional and interdisciplinary use. The non-pharmacological intervention options and pharmacotherapy are discussed in detail. This paper is the revised version of the 2014 publication and compiles the development in this area for everyday clinical practice.


Subject(s)
Dementia , Psychotherapy , Humans , Aged
2.
Neuroimage ; 286: 120511, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38184158

ABSTRACT

GABA+ and Glx (glutamate and glutamine) are widely studied metabolites, yet the commonly used magnetic resonance spectroscopy (MRS) techniques have significant limitations, including sensitivity to B0 and B1+-inhomogeneities, limited bandwidth of MEGA-pulses, high SAR which is accentuated at 7T. To address these limitations, we propose SLOW-EPSI method, employing a large 3D MRSI coverage and achieving a high resolution down to 0.26 ml. Simulation results demonstrate the robustness of SLOW-editing for both GABA+ and Glx against B0 and B1+-inhomogeneities within the range of [-0.3, +0.3] ppm and [40 %, 250 %], respectively. Two protocols, both utilizing a 70 mm thick FOV slab, were employed to target distinct brain regions in vivo, differentiated by their orientation: transverse and tilted. Protocol 1 (n = 11) encompassed 5 locations (cortical gray matter, white matter, frontal lobe, parietal lobe, and cingulate gyrus). Protocol 2 (n = 5) involved 9 locations (cortical gray matter, white matter, frontal lobe, occipital lobe, cingulate gyrus, caudate nucleus, hippocampus, putamen, and inferior thalamus). Quantitative analysis of GABA+ and Glx was conducted in a stepwise manner. First, B1+/B1--inhomogeneities were corrected using water reference data. Next, GABA+ and Glx values were calculated employing spectral fitting. Finally, the GABA+ level for each selected region was compared to the global Glx within the same subject, generating the GABA+/Glx_global ratio. Our findings from two protocols indicate that the GABA+/Glx_global level in cortical gray matter was approximately 16 % higher than in white matter. Elevated GABA+/Glx_global levels acquired with protocol 2 were observed in specific regions such as the caudate nucleus (0.118±0.067), putamen (0.108±0.023), thalamus (0.092±0.036), and occipital cortex (0.091±0.010), when compared to the cortical gray matter (0.079±0.012). Overall, our results highlight the effectiveness of SLOW-EPSI as a robust and efficient technique for accurate measurements of GABA+ and Glx at 7T. In contrast to previous SVS and 2D-MRSI based editing sequences with which only one or a limited number of brain regions can be measured simultaneously, the method presented here measures GABA+ and Glx from any brain area and any arbitrarily shaped volume that can be flexibly selected after the examination. Quantification of GABA+ and Glx across multiple brain regions through spectral fitting is achievable with a 9-minute acquisition. Additionally, acquisition times of 18-27 min (GABA+) and 9-18 min (Glx) are required to generate 3D maps, which are constructed using Gaussian fitting and peak integration.


Subject(s)
Brain , Gray Matter , Humans , Magnetic Resonance Spectroscopy/methods , Brain/metabolism , Gray Matter/metabolism , Glutamic Acid/metabolism , gamma-Aminobutyric Acid/metabolism , Magnetic Resonance Imaging/methods
3.
BMC Psychiatry ; 23(1): 722, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803337

ABSTRACT

BACKGROUND: Prospective memory is important for our health and independence but declines with age. Hence, interventions to enhance prospective memory, for example by providing an incentive, may promote healthy ageing. The neuroanatomical correlates of prospective memory and the processing of incentive-related prospective memory changes in older adults are not fully understood. In an fMRI study, we will therefore test whether incentives improve prospective memory in older adults and how prospective memory is processed in the brain in general, and when incentives are provided. Since goals and interests change across adulthood, avoiding losses is becoming more important for older adults than achieving gains. We therefore posit that loss-related incentives will enhance prospective memory, which will be subserved by increased prefrontal and midbrain activity. METHODS: We will include n = 60 healthy older adults (60-75 years of age) in a randomized, single-blind, and parallel-group study. We will acquire 7T fMRI data in an incentive group and a control group (n = 30 each, stratified by education, age, and sex). Before and after fMRI, all participants will complete questionnaires and cognitive tests to assess possible confounders (e.g., income, personality traits, sensitivity to reward or punishment). DISCUSSION: The results of this study will clarify whether loss-related incentives can enhance prospective memory and how any enhancement is processed in the brain. In addition, we will determine how prospective memory is processed in the brain in general. The results of our study will be an important step towards a better understanding of how prospective memory changes when we get older and for developing interventions to counteract cognitive decline.


Subject(s)
Memory, Episodic , Motivation , Humans , Aged , Adult , Magnetic Resonance Imaging , Single-Blind Method , Brain/diagnostic imaging , Randomized Controlled Trials as Topic
4.
Front Psychol ; 14: 1243099, 2023.
Article in English | MEDLINE | ID: mdl-37809311

ABSTRACT

Computerized cognitive training (CCT) has been shown to improve cognition in older adults via targeted exercises for single or multiple cognitive domains. Combining CCT with non-invasive brain stimulation is thought to be even more effective due to synergistic effects in the targeted brain areas and networks. However, little is known about the moderating effects of sex, age, and education on cognitive outcomes. Here, we investigated these factors in a randomized, double-blind study in which we administered CCT either combined with transcranial direct (tDCS), alternating (tACS) current stimulation or sham stimulation. 59 healthy older participants (mean age 71.7 ± 6.1) received either tDCS (2 mA), tACS (5 Hz), or sham stimulation over the left dorsolateral prefrontal cortex during the first 20 min of a CCT (10 sessions, 50 min, twice weekly). Before and after the complete cognitive intervention, a neuropsychological assessment was performed, and the test scores were summarized in a composite score. Our results showed a significant three-way interaction between age, years of education, and stimulation technique (F(6,52) = 5.53, p = 0.007), indicating that the oldest participants with more years of education particularly benefitted from tDCS compared to the sham group, while in the tACS group the youngest participants with less years of education benefit more from the stimulation. These results emphasize the importance of further investigating and taking into account sex, age, and education as moderating factors in the development of individualized stimulation protocols. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03475446.

5.
PLoS One ; 18(8): e0289532, 2023.
Article in English | MEDLINE | ID: mdl-37549139

ABSTRACT

The ability to remember future intentions (i.e., prospective memory) is influenced by attentional control. At the neuronal level, frontal and parietal brain regions have been related to attentional control and prospective memory. It is debated, however, whether more or less activity in these regions is beneficial for older adults' performance. We will test that by systematically enhancing or inhibiting activity in these regions with anodal or cathodal high-definition transcranial direct current stimulation in older adults. We will include n = 105 healthy older volunteers (60-75 years of age) in a randomized, double-blind, sham-controlled, and parallel-group design. The participants will receive either cathodal, anodal, or sham high-definition transcranial direct current stimulation of the left or right inferior frontal gyrus, or the right superior parietal gyrus (1mA for 20 min). During and after stimulation, the participants will complete tasks of attentional control and prospective memory. The results of this study will clarify how frontal and parietal brain regions contribute to attentional control and prospective memory in older healthy adults. In addition, we will elucidate the relationship between attentional control and prospective memory in that age group. The study has been registered with ClinicalTrials.gov on the 12th of May 2021 (trial identifier: NCT04882527).


Subject(s)
Memory, Episodic , Transcranial Direct Current Stimulation , Humans , Aged , Transcranial Direct Current Stimulation/methods , Double-Blind Method , Attention , Brain , Randomized Controlled Trials as Topic
6.
Haematologica ; 108(6): 1628-1639, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36727403

ABSTRACT

Optimal carfilzomib dosing is a matter of debate. We analyzed the inhibition profiles of proteolytic proteasome subunits ß5, ß2 and ß1 after low-dose (20/27 mg/m2) versus high-dose (≥36 mg/m2) carfilzomib in 103 pairs of peripheral blood mononuclear cells from patients with relapsed/refractory (RR) multiple myeloma (MM). ß5 activity was inhibited (median inhibition >50%) in vivo by 20 mg/m2, whereas ß2 and ß1 were co-inhibited only by 36 and 56 mg/m2, respectively. Coinhibition of ß2 (P=0.0001) and ß1 activity (P=0.0005) differed significantly between high-dose and low-dose carfilzomib. Subsequently, high-dose carfilzomib showed significantly more effective proteasome inhibition than low-dose carfilzomib in vivo (P=0.0003). We investigated the clinical data of 114 patients treated with carfilzomib combinations. High-dose carfilzomib demonstrated a higher overall response rate (P=0.03) and longer progression-free survival (PFS) (P=0.007) than low-dose carfilzomib. Therefore, we escalated the carfilzomib dose to ≥36 mg/m2 in 16 patients who progressed during low-dose carfilzomib-containing therapies. High-dose carfilzomib recaptured response (≥ partial remission) in nine (56%) patients with a median PFS of 4.4 months. Altogether, we provide the first in vivo evidence in RRMM patients that the molecular activity of high-dose carfilzomib differs from that of low-dose carfilzomib by coinhibition of ß2 and ß1 proteasome subunits and, consequently, high-dose carfilzomib achieves a superior anti-MM effect than low-dose carfilzomib and recaptures the response in RRMM resistant to low-dose carfilzomib. The optimal carfilzomib dose should be ≥36 mg/m2 to reach a sufficient anti-tumor activity, while the balance between efficacy and tolerability should be considered in each patient.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/pathology , Proteasome Endopeptidase Complex , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Leukocytes, Mononuclear , Dexamethasone/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
7.
Brain ; 146(8): 3319-3330, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36795496

ABSTRACT

Structural grey and white matter changes precede the manifestation of clinical signs of Huntington's disease by many years. Conversion to clinically manifest disease therefore likely reflects not merely atrophy but a more widespread breakdown of brain function. Here, we investigated the structure-function relationship close to and after clinical onset, in important regional brain hubs, particularly caudate nucleus and putamen, which are central to maintaining normal motor behaviour. In two independent cohorts of patients with premanifest Huntington's disease close to onset and very early manifest Huntington's disease (total n = 84; n = 88 matched controls), we used structural and resting state functional MRI. We show that measures of functional activity and local synchronicity within cortical and subcortical regions remain normal in the premanifest Huntington's disease phase despite clear evidence of brain atrophy. In manifest Huntington's disease, homeostasis of synchronicity was disrupted in subcortical hub regions such as caudate nucleus and putamen, but also in cortical hub regions, for instance the parietal lobe. Cross-modal spatial correlations of functional MRI data with receptor/neurotransmitter distribution maps showed that Huntington's disease-specific alterations co-localize with dopamine receptors D1 and D2, as well as dopamine and serotonin transporters. Caudate nucleus synchronicity significantly improved models predicting the severity of the motor phenotype or predicting the classification into premanifest Huntington's disease or motor manifest Huntington's disease. Our data suggest that the functional integrity of the dopamine receptor-rich caudate nucleus is key to maintaining network function. The loss of caudate nucleus functional integrity affects network function to a degree that causes a clinical phenotype. These insights into what happens in Huntington's disease could serve as a model for what might be a more general relationship between brain structure and function in neurodegenerative diseases in which other brain regions are vulnerable.


Subject(s)
Huntington Disease , Humans , Huntington Disease/metabolism , Caudate Nucleus/diagnostic imaging , Caudate Nucleus/metabolism , Dopamine , Brain/pathology , Atrophy/pathology , Magnetic Resonance Imaging , Phenotype
8.
Cereb Cortex ; 33(3): 612-621, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35253836

ABSTRACT

The role hemispheric lateralization in the prefrontal cortex plays for episodic memory formation in general, and for emotionally valenced information in particular, is debated. In a randomized, double-blind, and sham-controlled design, healthy young participants (n = 254) performed 2 runs of encoding to categorize the perceptual, semantic, or emotionally valenced (positive or negative) features of words followed by a free recall and a recognition task. To resolve competing hypotheses about the contribution of each hemisphere, we modulated left or right dorsolateral prefrontal cortex (DLPFC) activity using transcranial direct current stimulation during encoding (1 mA, 20 min). With stimulation of the left DLPFC, but not the right DLPFC, encoding and free recall performance improved particularly for words that were processed semantically. In addition, enhancing left DLPFC activity increased memory formation for positive content while reducing that for negative content. In contrast, promoting right DLPFC activity increased memory formation for negative content. The left DLPFC assesses semantic properties of new memory content at encoding and thus influences how successful new episodic memories are established. Hemispheric laterlization-more active left DLPFC and less active right DLPFC-at the encoding stage shifts the formation of memory traces in favor of positively valenced content.


Subject(s)
Memory, Episodic , Prefrontal Cortex , Humans , Mental Recall/physiology , Prefrontal Cortex/physiology , Recognition, Psychology/physiology , Transcranial Direct Current Stimulation , Double-Blind Method , Healthy Volunteers
9.
Magn Reson Med ; 89(4): 1601-1616, 2023 04.
Article in English | MEDLINE | ID: mdl-36478417

ABSTRACT

PURPOSE: Studies at 3T have shown that T1 relaxometry enables characterization of brain tissues at the single-subject level by comparing individual physical properties to a normative atlas. In this work, an atlas of normative T1 values at 7T is introduced with 0.6 mm isotropic resolution and its clinical potential is explored in comparison to 3T. METHODS: T1 maps were acquired in two separate healthy cohorts scanned at 3T and 7T. Using transfer learning, a template-based brain segmentation algorithm was adapted to ultra-high field imaging data. After segmenting brain tissues, volumes were normalized into a common space, and an atlas of normative T1 values was established by modeling the T1 inter-subject variability. A method for single-subject comparisons restricted to white matter and subcortical structures was developed by computing Z-scores. The comparison was applied to eight patients scanned at both field strengths for proof of concept. RESULTS: The proposed method for morphometry delivered segmentation masks without statistically significant differences from those derived with the original pipeline at 3T and achieved accurate segmentation at 7T. The established normative atlas allowed characterizing tissue alterations in single-subject comparisons at 7T, and showed greater anatomical details compared with 3T results. CONCLUSION: A high-resolution quantitative atlas with an adapted pipeline was introduced and validated. Several case studies on different clinical conditions showed the feasibility, potential and limitations of high-resolution single-subject comparisons based on quantitative MRI atlases. This method in conjunction with 7T higher resolution broadens the range of potential applications of quantitative MRI in clinical practice.


Subject(s)
Magnetic Resonance Imaging , White Matter , Humans , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , Algorithms , Brain/diagnostic imaging
10.
BMC Psychiatry ; 22(1): 830, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575442

ABSTRACT

BACKGROUND: Automated speech analysis has gained increasing attention to help diagnosing depression. Most previous studies, however, focused on comparing speech in patients with major depressive disorder to that in healthy volunteers. An alternative may be to associate speech with depressive symptoms in a non-clinical sample as this may help to find early and sensitive markers in those at risk of depression. METHODS: We included n = 118 healthy young adults (mean age: 23.5 ± 3.7 years; 77% women) and asked them to talk about a positive and a negative event in their life. Then, we assessed the level of depressive symptoms with a self-report questionnaire, with scores ranging from 0-60. We transcribed speech data and extracted acoustic as well as linguistic features. Then, we tested whether individuals below or above the cut-off of clinically relevant depressive symptoms differed in speech features. Next, we predicted whether someone would be below or above that cut-off as well as the individual scores on the depression questionnaire. Since depression is associated with cognitive slowing or attentional deficits, we finally correlated depression scores with performance in the Trail Making Test. RESULTS: In our sample, n = 93 individuals scored below and n = 25 scored above cut-off for clinically relevant depressive symptoms. Most speech features did not differ significantly between both groups, but individuals above cut-off spoke more than those below that cut-off in the positive and the negative story. In addition, higher depression scores in that group were associated with slower completion time of the Trail Making Test. We were able to predict with 93% accuracy who would be below or above cut-off. In addition, we were able to predict the individual depression scores with low mean absolute error (3.90), with best performance achieved by a support vector machine. CONCLUSIONS: Our results indicate that even in a sample without a clinical diagnosis of depression, changes in speech relate to higher depression scores. This should be investigated in more detail in the future. In a longitudinal study, it may be tested whether speech features found in our study represent early and sensitive markers for subsequent depression in individuals at risk.


Subject(s)
Depressive Disorder, Major , Young Adult , Humans , Female , Adult , Male , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/psychology , Depression/diagnosis , Longitudinal Studies , Speech , Surveys and Questionnaires
11.
BMC Psychiatry ; 22(1): 552, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35962371

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a major public health issue. Cognitive interventions such as computerized cognitive trainings (CCT) are effective in attenuating cognitive decline in AD. However, in those at risk of dementia related to AD, results are heterogeneous. Efficacy and feasibility of CCT needs to be explored in depth. Moreover, underlying mechanisms of CCT effects on the three cognitive domains typically affected by AD (episodic memory, semantic memory and spatial abilities) remain poorly understood. METHODS: In this bi-centric, randomized controlled trial (RCT) with parallel groups, participants (planned N = 162, aged 60-85 years) at risk for AD and with at least subjective cognitive decline will be randomized to one of three groups. We will compare serious game-based CCT against a passive wait list control condition and an active control condition (watching documentaries). Training will consist of daily at-home sessions for 10 weeks (50 sessions) and weekly on-site group meetings. Subsequently, the CCT group will continue at-home training for an additional twenty-weeks including monthly on-site booster sessions. Investigators conducting the cognitive assessments will be blinded. Group leaders will be aware of participants' group allocations. Primarily, we will evaluate change using a compound value derived from the comprehensive cognitive assessment for each of three cognitive domains. Secondary, longitudinal functional and structural magnetic resonance imaging (MRI) and evaluation of blood-based biomarkers will serve to investigate neuronal underpinnings of expected training benefits. DISCUSSION: The present study will address several shortcomings of previous CCT studies. This entails a comparison of serious game-based CCT with both a passive and an active control condition while including social elements crucial for training success and adherence, the combination of at-home and on-site training, inclusion of booster sessions and assessment of physiological markers. Study outcomes will provide information on feasibility and efficacy of serious game-based CCT in older adults at risk for AD and will potentially generalize to treatment guidelines. Moreover, we set out to investigate physiological underpinnings of CCT induced neuronal changes to form the grounds for future individually tailored interventions and neuro-biologically informed trainings. TRIAL REGISTRATION: This RCT was registered 1st of July 2020 at clinicaltrials.gov (Identifier NCT04452864).


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Memory, Episodic , Aged , Aged, 80 and over , Alzheimer Disease/therapy , Cognition/physiology , Cognitive Dysfunction/psychology , Cognitive Dysfunction/therapy , Humans , Magnetic Resonance Imaging , Middle Aged , Randomized Controlled Trials as Topic
13.
J Int Neuropsychol Soc ; 28(6): 620-627, 2022 07.
Article in English | MEDLINE | ID: mdl-34187616

ABSTRACT

OBJECTIVE: Semantic verbal fluency (SVF) tasks require individuals to name items from a specified category within a fixed time. An impaired SVF performance is well documented in patients with amnestic Mild Cognitive Impairment (aMCI). The two leading theoretical views suggest either loss of semantic knowledge or impaired executive control to be responsible. METHOD: We assessed SVF 3 times on 2 consecutive days in 29 healthy controls (HC) and 29 patients with aMCI with the aim to answer the question which of the two views holds true. RESULTS: When doing the task for the first time, patients with aMCI produced fewer and more common words with a shorter mean response latency. When tested repeatedly, only healthy volunteers increased performance. Likewise, only the performance of HC indicated two distinct retrieval processes: a prompt retrieval of readily available items at the beginning of the task and an active search through semantic space towards the end. With repeated assessment, the pool of readily available items became larger in HC, but not patients with aMCI. CONCLUSION: The production of fewer and more common words in aMCI points to a smaller search set and supports the loss of semantic knowledge view. The failure to improve performance as well as the lack of distinct retrieval processes point to an additional impairment in executive control. Our data did not clearly favour one theoretical view over the other, but rather indicates that the impairment of patients with aMCI in SVF is due to a combination of both.


Subject(s)
Cognitive Dysfunction , Executive Function , Cognitive Dysfunction/psychology , Executive Function/physiology , Humans , Neuropsychological Tests , Semantics
14.
Hematol Oncol ; 40(2): 202-211, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34796520

ABSTRACT

The multi-agent therapy "VDT-PACE" represents an established regimen in relapsed/refractory multiple myeloma (RRMM). Here, we report on our experience with a "modified VDT-PACE" incorporating new generation anti-MM agents daratumumab and carfilzomib ("Dara-KDT-P(A)CE"). We retrospectively analyzed 38 patients with RRMM treated with "Dara-KDT-P(A)CE". The median age was 62 (range 45-82) years, and the patients were heavily pretreated with a median of 5 (range 2-12) prior lines of therapy. Twenty-one (55%) patients suffered from penta-refractory MM. High-risk cytogenetics was present in 31 (81%) patients. The patients received a median of 2 (range 1-10) cycles of this therapy, and the overall response rate (ORR) was 70%. Patients with penta-refractory MM and high-risk cytogenetics showed similar ORR of 65% and 79%, respectively. The median progression-free survival (PFS) and overall survival were 4.1 (95% CI 2.7-5.4) and 8.4 (95% CI 6.7-10.0) months, respectively. Patients with lactate dehydrogenase >250 IU/L showed significantly shorter PFS in comparison with others patients (p = 0.006). We used this regimen as bridging therapy prior to chimeric antigen receptor T-cell infusion in four patients. In conclusion, "Dara-KDT-P(A)CE" is an effective salvage therapy for patients with heavily pretreated, multi-refractory, high-risk RRMM lacking alternative options.


Subject(s)
Multiple Myeloma , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Dexamethasone , Humans , Middle Aged , Multiple Myeloma/drug therapy , Progression-Free Survival , Retrospective Studies , Salvage Therapy
15.
Blood Adv ; 5(19): 3794-3798, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34471932

ABSTRACT

T cell-engaging immunotherapies exert unprecedented single-agent activity in multiple myeloma (MM), thereby putting a yet unexplored selective pressure on the clonal architecture. In this study, we report on homozygous BCMA (TNFRSF17) gene deletion after BCMA-targeting T cell-redirecting bispecific antibody therapy in a heavily pretreated MM patient. Loss of BCMA protein expression persisted over subsequent relapses, with no response to treatment with anti-BCMA antibody drug conjugate. In light of the multiple alternative targets that are emerging in addition to BCMA, we extended our analyses to delineate a more complete picture of genetic alterations that may have an impact on immunotherapy targets in MM. We performed whole-genome sequencing and RNA sequencing in 100 MM patients (50 were newly diagnosed; 50 were relapsed/refractory) and identified a significant proportion of patients with aberrations in genes encoding immunotherapy targets; GPRC5D ranked first with 15% heterozygous deletions, followed by CD38 (10%), SDC1 (5%), and TNFRSF17 (4%). Notably, these heterozygous deletions did not lower the expression levels of respective genes, but they may represent a first hit that drives the acquisition of homozygous deletions and subsequent antigen-loss relapse upon targeted immunotherapy. In summary, we show preexisting vulnerability in genes encoding immunotargets before and homozygous deletions after T cell-engaging immunotherapy.


Subject(s)
Antibodies, Bispecific , Multiple Myeloma , B-Cell Maturation Antigen , Humans , Immunotherapy , Multiple Myeloma/genetics , Multiple Myeloma/therapy , T-Lymphocytes
16.
Sci Rep ; 11(1): 16080, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34373525

ABSTRACT

We assessed the structure-function relationship of the human cholinergic system and hypothesized that structural measures are associated with short-latency sensory afferent inhibition (SAI), an electrophysiological measure of central cholinergic signal transmission. Healthy volunteers (n = 36) and patients with mild cognitive impairment (MCI, n = 20) underwent median nerve SAI and 3T structural MRI to determine the volume of the basal forebrain and the thalamus. Patients with MCI had smaller basal forebrain (p < 0.001) or thalamus volumes (p < 0.001) than healthy volunteers. Healthy SAI responders (> 10% SAI) had more basal forebrain volume than non-responders (p = 0.004) or patients with MCI (p < 0.001). More basal forebrain volume was associated with stronger SAI in healthy volunteers (r = 0.33, p < 0.05) but not patients with MCI. There was no significant relationship between thalamus volumes and SAI. Basal forebrain volume is associated with cholinergic function (SAI) in healthy volunteers but not in MCI patients. The in-vivo investigation of the structure-function relationship could further our understanding of the human cholinergic system in patients with suspected or known cholinergic system degeneration.


Subject(s)
Basal Forebrain/metabolism , Basal Forebrain/physiopathology , Cholinergic Agents/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Thalamus/metabolism , Thalamus/physiopathology , Adult , Aged , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neural Inhibition/physiology , Neuropsychological Tests
17.
PLoS One ; 16(6): e0251194, 2021.
Article in English | MEDLINE | ID: mdl-34153038

ABSTRACT

Computational reproducibility is a corner stone for sound and credible research. Especially in complex statistical analyses-such as the analysis of longitudinal data-reproducing results is far from simple, especially if no source code is available. In this work we aimed to reproduce analyses of longitudinal data of 11 articles published in PLOS ONE. Inclusion criteria were the availability of data and author consent. We investigated the types of methods and software used and whether we were able to reproduce the data analysis using open source software. Most articles provided overview tables and simple visualisations. Generalised Estimating Equations (GEEs) were the most popular statistical models among the selected articles. Only one article used open source software and only one published part of the analysis code. Replication was difficult in most cases and required reverse engineering of results or contacting the authors. For three articles we were not able to reproduce the results, for another two only parts of them. For all but two articles we had to contact the authors to be able to reproduce the results. Our main learning is that reproducing papers is difficult if no code is supplied and leads to a high burden for those conducting the reproductions. Open data policies in journals are good, but to truly boost reproducibility we suggest adding open code policies.


Subject(s)
Computational Biology/methods , Data Analysis , Humans , Longitudinal Studies , Publications , Reproducibility of Results , Research Design , Software
18.
Clin Neurophysiol ; 132(6): 1254-1263, 2021 06.
Article in English | MEDLINE | ID: mdl-33875372

ABSTRACT

OBJECTIVE: To investigate the efficacy of transcranial direct (tDCS) or alternating current stimulation (tACS) in boosting cognitive training efficiency in healthy older adults. We further explored whether such improvements depend on general cognitive performance or age. METHODS: In this randomized, sham-controlled study, 59 healthy elderly participants (mean age 71.7) were assigned to receive computer-based cognitive training (10 sessions, 50 min, twice weekly) combined with tDCS (2 mA), tACS (5 Hz), or sham stimulation over the left dorsolateral prefrontal cortex (20 minutes). Cognitive performance was assessed with the Montreal Cognitive Assessment (MoCA), and a cognitive composite score derived from a broad neuropsychological test battery before and immediately after the intervention as well as at 6 and 12 months follow-ups. RESULTS: Performance in the cognitive composite score improved significantly in all groups but was not further modulated by neurostimulation. Additional analyses revealed that participants with a low initial MoCA score (<1SD) improved significantly more in the tDCS than in the sham group. CONCLUSION: TDCS increased the efficacy of cognitive training, but only in participants with initially low general cognitive performance. SIGNIFICANCE: Cognitive interventions including tDCS should address baseline performance as modulating factor of cognitive outcomes.


Subject(s)
Cognition/physiology , Cognitive Dysfunction/physiopathology , Transcranial Direct Current Stimulation , Aged , Aged, 80 and over , Cognitive Dysfunction/psychology , Double-Blind Method , Female , Humans , Male , Middle Aged
19.
BMC Psychiatry ; 21(1): 87, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33563242

ABSTRACT

BACKGROUND: Several fMRI studies found hyperactivity in the hippocampus during pattern separation tasks in patients with Mild Cognitive Impairment (MCI; a prodromal stage of Alzheimer's disease). This was associated with memory deficits, subsequent cognitive decline, and faster clinical progression. A reduction of hippocampal hyperactivity with an antiepileptic drug improved memory performance. Pharmacological interventions, however, entail the risk of side effects. An alternative approach may be real-time fMRI neurofeedback, during which individuals learn to control region-specific brain activity. In the current project we aim to test the potential of neurofeedback to reduce hippocampal hyperactivity and thereby improve memory performance. METHODS: In a single-blind parallel-group study, we will randomize n = 84 individuals (n = 42 patients with MCI, n = 42 healthy elderly volunteers) to one of two groups receiving feedback from either the hippocampus or a functionally independent region. Percent signal change of the hemodynamic response within the respective target region will be displayed to the participant with a thermometer icon. We hypothesize that only feedback from the hippocampus will decrease hippocampal hyperactivity during pattern separation and thereby improve memory performance. DISCUSSION: Results of this study will reveal whether real-time fMRI neurofeedback is able to reduce hippocampal hyperactivity and thereby improve memory performance. In addition, the results of this study may identify predictors of successful neurofeedback as well as the most successful regulation strategies. TRIAL REGISTRATION: The study has been registered with clinicaltrials.gov on the 16th of July 2019 (trial identifier: NCT04020744 ).


Subject(s)
Cognitive Dysfunction , Neurofeedback , Aged , Cognitive Dysfunction/therapy , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Randomized Controlled Trials as Topic , Single-Blind Method
20.
Brain Sci ; 10(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276533

ABSTRACT

Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows the manipulation of intrinsic brain oscillations. Numerous studies have applied tACS in the laboratory to enhance cognitive performance. With this systematic review, we aim to provide an overview of frequency-specific tACS effects on a range of cognitive functions in healthy adults. This may help to transfer stimulation protocols to real-world applications. We conducted a systematic literature search on PubMed and Cochrane databases and considered tACS studies in healthy adults (age > 18 years) that focused on cognitive performance. The search yielded n = 109 studies, of which n = 57 met the inclusion criteria. The results indicate that theta-tACS was beneficial for several cognitive functions, including working memory, executive functions, and declarative memory. Gamma-tACS enhanced performance in both auditory and visual perception but it did not change performance in tasks of executive functions. For attention, the results were less consistent but point to an improvement in performance with alpha- or gamma-tACS. We discuss these findings and point to important considerations that would precede a transfer to real-world applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...