Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1280, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218969

ABSTRACT

Proteomic fingerprinting using MALDI-TOF mass spectrometry is a well-established tool for identifying microorganisms and has shown promising results for identification of animal species, particularly disease vectors and marine organisms. And thus can be a vital tool for biodiversity assessments in ecological studies. However, few studies have tested species identification across different orders and classes. In this study, we collected data from 1246 specimens and 198 species to test species identification in a diverse dataset. We also evaluated different specimen preparation and data processing approaches for machine learning and developed a workflow to optimize classification using random forest. Our results showed high success rates of over 90%, but we also found that the size of the reference library affects classification error. Additionally, we demonstrated the ability of the method to differentiate marine cryptic-species complexes and to distinguish sexes within species.


Subject(s)
Disease Vectors , Proteomics , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
2.
Mol Ecol Resour ; 23(7): 1620-1631, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37417794

ABSTRACT

Morphological identification of cnidarian species can be difficult throughout all life stages due to the lack of distinct morphological characters. Moreover, in some cnidarian taxa genetic markers are not fully informative, and in these cases combinations of different markers or additional morphological verifications may be required. Proteomic fingerprinting based on MALDI-TOF mass spectra was previously shown to provide reliable species identification in different metazoans including some cnidarian taxa. For the first time, we tested the method across four cnidarian classes (Staurozoa, Scyphozoa, Anthozoa, Hydrozoa) and included different scyphozoan life-history stages (polyp, ephyra, medusa) in our dataset. Our results revealed reliable species identification based on MALDI-TOF mass spectra across all taxa with species-specific clusters for all 23 analysed species. In addition, proteomic fingerprinting was successful for distinguishing developmental stages, still by retaining a species specific signal. Furthermore, we identified the impact of different salinities in different regions (North Sea and Baltic Sea) on proteomic fingerprints to be negligible. In conclusion, the effects of environmental factors and developmental stages on proteomic fingerprints seem to be low in cnidarians. This would allow using reference libraries built up entirely of adult or cultured cnidarian specimens for the identification of their juvenile stages or specimens from different geographic regions in future biodiversity assessment studies.


Subject(s)
Anthozoa , Proteomics , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Anthozoa/genetics
3.
Mol Ecol Resour ; 23(5): 1077-1091, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36872843

ABSTRACT

We analysed the robustness of species identification based on proteomic composition to data processing and intraspecific variability, specificity and sensitivity of species-markers as well as discriminatory power of proteomic fingerprinting and its sensitivity to phylogenetic distance. Our analysis is based on MALDI-TOF MS (matrix-assisted laser desorption ionization time of flight mass spectrometry) data from 32 marine copepod species coming from 13 regions (North and Central Atlantic and adjacent seas). A random forest (RF) model correctly classified all specimens to the species level with only small sensitivity to data processing, demonstrating the strong robustness of the method. Compounds with high specificity showed low sensitivity, that is identification was based on complex pattern-differences rather than on presence of single markers. Proteomic distance was not consistently related to phylogenetic distance. A species-gap in proteome composition appeared at 0.7 Euclidean distance when using only specimens from the same sample. When other regions or seasons were included, intraspecific variability increased, resulting in overlaps of intra and inter-specific distance. Highest intraspecific distances (>0.7) were observed between specimens from brackish and marine habitats (i.e., salinity probably affects proteomic patterns). When testing library sensitivity of the RF model to regionality, strong misidentification was only detected between two congener pairs. Still, the choice of reference library may have an impact on identification of closely related species and should be tested before routine application. We envisage high relevance of this time- and cost-efficient method for future zooplankton monitoring as it provides not only in-depth taxonomic resolution for counted specimens but also add-on information, such as on developmental stage or environmental conditions.


Subject(s)
Copepoda , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Phylogeny , Proteomics , Proteome/analysis
4.
Mol Ecol Resour ; 23(2): 382-395, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36114815

ABSTRACT

Species identification is pivotal in biodiversity assessments and proteomic fingerprinting by MALDI-TOF mass spectrometry has already been shown to reliably identify calanoid copepods to species level. However, MALDI-TOF data may contain more information beyond mere species identification. In this study, we investigated different ontogenetic stages (copepodids C1-C6 females) of three co-occurring Calanus species from the Arctic Fram Strait, which cannot be identified to species level based on morphological characters alone. Differentiation of the three species based on mass spectrometry data was without any error. In addition, a clear stage-specific signal was detected in all species, supported by clustering approaches as well as machine learning using Random Forest. More complex mass spectra in later ontogenetic stages as well as relative intensities of certain mass peaks were found as the main drivers of stage distinction in these species. Through a dilution series, we were able to show that this did not result from the higher amount of biomass that was used in tissue processing of the larger stages. Finally, the data were tested in a simulation for application in a real biodiversity assessment by using Random Forest for stage classification of specimens absent from the training data. This resulted in a successful stage-identification rate of almost 90%, making proteomic fingerprinting a promising tool to investigate polewards shifts of Atlantic Calanus species and, in general, to assess stage compositions in biodiversity assessments of Calanoida, which can be notoriously difficult using conventional identification methods.


Subject(s)
Copepoda , Animals , Female , Proteomics , Biodiversity , Mass Spectrometry , Oceans and Seas
5.
Mol Ecol ; 31(1): 313-330, 2022 01.
Article in English | MEDLINE | ID: mdl-34676606

ABSTRACT

The crustacean marine isopod species Haploniscus bicuspis (Sars, 1877) shows circum-Icelandic distribution in a wide range of environmental conditions and along well-known geographic barriers, such as the Greenland-Iceland-Faroe (GIF) Ridge. We wanted to explore population genetics, phylogeography and cryptic speciation as well as investigate whether previously described, but unaccepted subspecies have any merit. Using the same set of specimens, we combined mitochondrial COI sequences, thousands of nuclear loci (ddRAD), and proteomic profiles, plus selected morphological characters using confocal laser scanning microscopy (CLSM). Five divergent genetic lineages were identified by COI and ddRAD, two south and three north of the GIF Ridge. Assignment of populations to the three northern lineages varied and detailed analyses revealed hybridization and gene flow between them, suggesting a single northern species with a complex phylogeographic history. No apparent hybridization was observed among lineages south of the GIF Ridge, inferring the existence of two more species. Differences in proteomic profiles between the three putative species were minimal, implying an ongoing or recent speciation process. Population differentiation was high, even among closely associated populations, and higher in mitochondrial COI than nuclear ddRAD loci. Gene flow is apparently male-biased, leading to hybrid zones and instances of complete exchange of the local nuclear genome through immigrating males. This study did not confirm the existence of subspecies defined by male characters, which probably instead refer to different male developmental stages.


Subject(s)
Isopoda , Animals , DNA, Mitochondrial/genetics , Genetic Speciation , Genetic Variation , Genomics , Iceland , Isopoda/genetics , Male , Phylogeny , Phylogeography , Proteomics
6.
Mol Ecol Resour ; 21(6): 1936-1951, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33900025

ABSTRACT

Accurate and reliable biodiversity estimates of marine zooplankton are a prerequisite to understand how changes in diversity can affect whole ecosystems. Species identification in the deep sea is significantly impeded by high numbers of new species and decreasing numbers of taxonomic experts, hampering any assessment of biodiversity. We used in parallel morphological, genetic, and proteomic characteristics of specimens of calanoid copepods from the abyssal South Atlantic to test if proteomic fingerprinting can accelerate estimating biodiversity. We cross-validated the respective molecular discrimination methods with morphological identifications to establish COI and proteomic reference libraries, as they are a pre-requisite to assign taxonomic information to the identified molecular species clusters. Due to the high number of new species only 37% of the individuals could be assigned to species or genus level morphologically. COI sequencing was successful for 70% of the specimens analysed, while proteomic fingerprinting was successful for all specimens examined. Predicted species richness based on morphological and molecular methods was 42 morphospecies, 56 molecular operational taxonomic units (MOTUs) and 79 proteomic operational taxonomic units (POTUs), respectively. Species diversity was predicted based on proteomic profiles using hierarchical cluster analysis followed by application of the variance ratio criterion for identification of species clusters. It was comparable to species diversity calculated based on COI sequence distances. Less than 7% of specimens were misidentified by proteomic profiles when compared with COI derived MOTUs, indicating that unsupervised machine learning using solely proteomic data could be used for quickly assessing species diversity.


Subject(s)
Biodiversity , Copepoda , Proteomics , Animals , Atlantic Ocean , Copepoda/genetics , Ecosystem , Phylogeny
7.
J Plankton Res ; 42(6): 702-713, 2020.
Article in English | MEDLINE | ID: mdl-33239965

ABSTRACT

Predators not only have direct impact on biomass but also indirect, non-consumptive effects on the behavior their prey organisms. A characteristic response of zooplankton in aquatic ecosystems is predator avoidance by diel vertical migration (DVM), a behavior which is well studied on the population level. A wide range of behavioral diversity and plasticity has been observed both between- as well as within-species and, hence, investigating predator-prey interactions at the individual level seems therefore essential for a better understanding of zooplankton dynamics. Here we applied an underwater imaging instrument, the video plankton recorder (VPR), which allows the non-invasive investigation of individual, diel adaptive behavior of zooplankton in response to predators in the natural oceanic environment, providing a finely resolved and continuous documentation of the organisms' vertical distribution. Combing observations of copepod individuals observed with the VPR and hydroacoustic estimates of predatory fish biomass, we here show (i) a small-scale DVM of ovigerous Pseudocalanus acuspes females in response to its main predators, (ii) in-situ observations of a direct short-term reaction of the prey to the arrival of the predator and (iii) in-situ evidence of pronounced individual variation in this adaptive behavior with potentially strong effects on individual performance and ecosystem functioning.

8.
Article in English | MEDLINE | ID: mdl-27825870

ABSTRACT

Invertebrates inhabiting shallow water habitats represent particularly appropriate organisms for studying the acclimation potential to environmental stress, since they naturally experience large fluctuations in key abiotic factors such as temperature and salinity. We quantified the biochemical- (mRNA transcripts of 78-kDa glucose-regulated protein (grp78), 70-kDa heat shock protein (hsp70), 90-kDa heat shock protein (hsp90), protein synthesis of HSP70) and organismal- (oxygen consumption rates) level responses to acute heat stress on two neritic copepods (Acartia tonsa and Eurytemora affinis) with special emphasis on the role of short-term acclimation. Transcripts of hsp increased with increasing acute temperature exposure and protein quantities (HSP70) were detectable for 30h. In A. tonsa, HSP70 synthesis was also associated with handling stress. In E. affinis, heat-dependent responses were detected in hsp90, grp78 (mRNA) and HSP70 (protein) expression. Acclimation to a warmer temperature significantly decreased the heat stress response in both species. In A. tonsa, short-term acclimation to heat was not detected at the organismal level via metabolic rate. This study reveals interspecific differences in both the gene expression of stress molecules (e.g. hsp90) as well as the stress factors needed to evoke a stress response (heat vs. handling). We demonstrate that cellular stress markers can be useful measures of short-term thermal acclimation in copepods, which may remain undetected by organismal-level measures.


Subject(s)
Acclimatization , Copepoda/physiology , Energy Metabolism , Gene Expression Regulation , Stress, Physiological , Thermotolerance , Animals , Aquaculture , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Biomarkers/metabolism , Endoplasmic Reticulum Chaperone BiP , Estuaries , Female , Global Warming , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Male , Oxygen Consumption , Species Specificity , Time Factors
9.
Sci Rep ; 5: 14962, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26455575

ABSTRACT

Planktonic copepods are a key group in the marine pelagic ecosystem, linking primary production with upper trophic levels. Their abundance and population dynamics are constrained by the life history tradeoffs associated with resource availability, reproduction and predation pressure. The tradeoffs associated with the ageing process and its underlying biological mechanisms are, however, poorly known. Our study shows that ageing in copepods involves a deterioration of their vital rates and a rise in mortality associated with an increase in oxidative damage (lipid peroxidation); the activity of the cell-repair enzymatic machinery also increases with age. This increase in oxidative damage is associated with an increase in the relative content of the fatty acid 22:6(n-3), an essential component of cell membranes that increases their susceptibility to peroxidation. Moreover, we show that caloric (food) restriction in marine copepods reduces their age-specific mortality rates, and extends the lifespan of females and their reproductive period. Given the overall low production of the oceans, this can be a strategy, at least in certain copepod species, to enhance their chances to reproduce in a nutritionally dilute, temporally and spatially patchy environment.


Subject(s)
Aging/physiology , Caloric Restriction , Copepoda/physiology , Plankton/physiology , Animals , Ecosystem , Fatty Acids/metabolism , Female , Food Chain , Lipid Peroxidation , Male , Oxidative Stress , Population Dynamics , Predatory Behavior , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL