Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2802, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555281

ABSTRACT

With the huge progress in micro-electronics and artificial intelligence, the ultrasound probe has become the bottleneck in further adoption of ultrasound beyond the clinical setting (e.g. home and monitoring applications). Today, ultrasound transducers have a small aperture, are bulky, contain lead and are expensive to fabricate. Furthermore, they are rigid, which limits their integration into flexible skin patches. New ways to fabricate flexible ultrasound patches have therefore attracted much attention recently. First prototypes typically use the same lead-containing piezo-electric materials, and are made using micro-assembly of rigid active components on plastic or rubber-like substrates. We present an ultrasound transducer-on-foil technology based on thermal embossing of a piezoelectric polymer. High-quality two-dimensional ultrasound images of a tissue mimicking phantom are obtained. Mechanical flexibility and effective area scalability of the transducer are demonstrated by functional integration into an endoscope probe with a small radius of 3 mm and a large area (91.2×14 mm2) non-invasive blood pressure sensor.


Subject(s)
Artificial Intelligence , Electronics , Ultrasonography , Phantoms, Imaging , Electricity , Transducers , Equipment Design
2.
Inorg Chem ; 52(22): 13004-13, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24175921

ABSTRACT

Tetranuclear carboxylate clusters with the general structural formula [M4(L)2(O2CR)4] (M = Cd, Zn; LH2 = 2,6-bis(1-(2-hydroxyphenyl)-iminoethyl)pyridine; R = CH3, C6H5) were studied by variable-temperature (VT) (1)H NMR spectroscopy. The dynamics of these clusters in solution can be described by two uncorrelated dynamical processes. The first dynamical process is the interconversion, both inter- as well as intramolecular, between syn-syn bridging and chelating carboxylate ligands. It is shown that this carboxylate interconversion mechanism is predominantly intramolecular for [Cd4(L)2(O2CCH3)4] (1a), whereas for [Zn4(L)2(O2CCH3)4] (2a) it is predominantly intermolecular. Two models for the second dynamic process, which involves the diiminepyridine ligand, are described. The first model comprises a nondissociative rotation around an internal axis, which changes the chirality of the cluster. The second model is based on the dissociation of the tetranuclear cluster into two dimeric species, which recombine again. This last model is supported by scrambling experiments between [Zn4(L)2(O2CCH3)4] (2a) and [Zn4(L3)2(O2CCH3)4] (5) (L3H2 = 2,6-bis(1-(2-hydroxyphenyl)-iminoethyl)4-chloropyridine).


Subject(s)
Carboxylic Acids/chemistry , Pyridines/chemistry , Crystallography, X-Ray , Ligands , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL