Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Hum Brain Mapp ; 44(18): 6308-6325, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37909347

ABSTRACT

Functional neuroimaging serves as a tool to better understand the cerebral correlates of atypical behaviors, such as learning difficulties. While significant advances have been made in characterizing the neural correlates of reading difficulties (developmental dyslexia), comparatively little is known about the neurobiological correlates of mathematical learning difficulties, such as developmental dyscalculia (DD). Furthermore, the available neuroimaging studies of DD are characterized by small sample sizes and variable inclusion criteria, which make it problematic to compare across studies. In addition, studies to date have focused on identifying single deficits in neuronal processing among children with DD (e.g., mental arithmetic), rather than probing differences in brain function across different processing domains that are known to be affected in children with DD. Here, we seek to address the limitations of prior investigations. Specifically, we used functional magnetic resonance imaging (fMRI) to probe brain differences between children with and without persistent DD; 68 children (8-10 years old, 30 with DD) participated in an fMRI study designed to investigate group differences in the functional neuroanatomy associated with commonly reported behavioral deficits in children with DD: basic number processing, mental arithmetic and visuo-spatial working memory (VSWM). Behavioral data revealed that children with DD were less accurate than their typically achieving (TA) peers for the basic number processing and arithmetic tasks. No behavioral differences were found for the tasks measuring VSWM. A pre-registered, whole-brain, voxelwise univariate analysis of the fMRI data from the entire sample of children (DD and TA) revealed areas commonly associated with the three tasks (basic number processing, mental arithmetic, and VSWM). However, the examination of differences in brain activation between children with and without DD revealed no consistent group differences in brain activation. In view of these null results, we ran exploratory, Bayesian analyses on the data to quantify the amount of evidence for no group differences. This analysis provides supporting evidence for no group differences across all three tasks. We present the largest fMRI study comparing children with and without persistent DD to date. We found no group differences in brain activation using univariate, frequentist analyses. Moreover, Bayesian analyses revealed evidence for the null hypothesis of no group differences. These findings contradict previous literature and reveal the need to investigate the neural basis of DD using multivariate and network-based approaches to brain imaging.


Subject(s)
Dyscalculia , Memory, Short-Term , Child , Humans , Memory, Short-Term/physiology , Magnetic Resonance Imaging , Dyscalculia/diagnostic imaging , Dyscalculia/complications , Bayes Theorem , Brain/diagnostic imaging
2.
Brain Lang ; 241: 105270, 2023 06.
Article in English | MEDLINE | ID: mdl-37141728

ABSTRACT

Individual differences in reading ability are associated with characteristics of white matter microstructure in the brain. However, previous studies have largely measured reading as a single construct, resulting in difficulty characterizing the role of structural connectivity in discrete subskills of reading. The present study used diffusion tensor imaging to examine how white matter microstructure, measured by fractional anisotropy (FA), relates to individual differences in reading subskills in children aged 8 to 14 (n = 65). Findings showed positive correlations between FA of the left arcuate fasciculus and measures of single word reading and rapid naming abilities. Negative correlations were observed between FA of the right inferior longitudinal fasciculus and bilateral uncinate fasciculi, and reading subskills, particularly reading comprehension. The results suggest that although reading subskills rely to some extent on shared tracts, there are also distinct characteristics of white matter microstructure supporting different components of reading ability in children.


Subject(s)
Dyslexia , White Matter , Humans , Child , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging , Dyslexia/diagnostic imaging , Comprehension , Anisotropy , Blindness
3.
R Soc Open Sci ; 9(3): 201303, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35308625

ABSTRACT

During the COVID-19 pandemic, people across the globe have been exposed to large amounts of statistical data. Previous studies have shown that individuals' mathematical understanding of health-related information affects their attitudes and behaviours. Here, we investigate the relation between (i) basic numeracy, (ii) COVID-19 health numeracy, and (iii) COVID-19 health-related attitudes and behaviours. An online survey measuring these three variables was distributed in Canada, the United States (US) and the United Kingdom (UK) (n = 2032). In line with predictions, basic numeracy was positively related to COVID-19 health numeracy. However, predictions, neither basic numeracy nor COVID-19 health numeracy was related to COVID-19 health-related attitudes and behaviours (e.g. follow experts' recommendations on social distancing, wearing masks etc.). Multi-group analysis was used to investigate mean differences and differences in the strength of the correlation across countries. Results indicate there were no between-country differences in the correlations between the main constructs but there were between-country differences in latent means. Overall, results suggest that while basic numeracy is related to one's understanding of data about COVID-19, better numeracy alone is not enough to influence a population's health-related attitudes about disease severity and to increase the likelihood of following public health advice.

4.
Dev Cogn Neurosci ; 53: 101058, 2022 02.
Article in English | MEDLINE | ID: mdl-34999505

ABSTRACT

BACKGROUND: Substantial evidence acknowledges the complex gene-environment interplay impacting brain development and learning. Intergenerational neuroimaging allows the assessment of familial transfer effects on brain structure, function and behavior by investigating neural similarity in caregiver-child dyads. METHODS: Neural similarity in the human reading network was assessed through well-used measures of brain structure (i.e., surface area (SA), gyrification (lG), sulcal morphology, gray matter volume (GMV) and cortical thickness (CT)) in 69 mother-child dyads (children's age~11 y). Regions of interest for the reading network included left-hemispheric inferior frontal gyrus, inferior parietal lobe and fusiform gyrus. Mother-child similarity was quantified by correlation coefficients and familial specificity was tested by comparison to random adult-child dyads. Sulcal morphology analyses focused on occipitotemporal sulcus interruptions and similarity was assessed by chi-square goodness of fit. RESULTS: Significant structural brain similarity was observed for mother-child dyads in the reading network for lG, SA and GMV (r = 0.349/0.534/0.542, respectively), but not CT. Sulcal morphology associations were non-significant. Structural brain similarity in lG, SA and GMV were specific to mother-child pairs. Furthermore, structural brain similarity for SA and GMV was higher compared to CT. CONCLUSION: Intergenerational neuroimaging techniques promise to enhance our knowledge of familial transfer effects on brain development and disorders.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Adult , Cerebral Cortex/anatomy & histology , Child , Gray Matter/anatomy & histology , Humans , Mother-Child Relations , Neuroimaging
5.
Neuroimage ; 243: 118529, 2021 11.
Article in English | MEDLINE | ID: mdl-34469812

ABSTRACT

Individual differences in reading ability have been linked to characteristics of functional connectivity in the brain in both children and adults. However, many previous studies have used single or composite measures of reading, leading to difficulty characterizing the role of functional connectivity in discrete subskills of reading. The present study addresses this issue using resting-state fMRI to examine how resting-state functional connectivity (RSFC) related to individual differences in children's reading subskills, including decoding, sight word reading, reading comprehension, and rapid automatized naming (RAN). Findings showed both positive and negative RSFC-behaviour relationships that diverged across different reading subskills. Positive relationships included increasing RSFC among left dorsal and anterior regions with increasing decoding proficiency, and increasing RSFC between the left thalamus and right fusiform gyrus with increasing sight word reading, RAN, and reading comprehension abilities. In contrast, negative relationships suggested greater functional segregation of attentional and reading networks with improved performance on RAN, decoding, and reading comprehension tasks. Importantly, the results suggest that although reading subskills rely to some extent on shared functional networks, there are also distinct functional connections supporting different components of reading ability in children.


Subject(s)
Brain Mapping/methods , Comprehension/physiology , Dyslexia/diagnostic imaging , Magnetic Resonance Imaging/methods , Reading , Adolescent , Child , Female , Humans , Male , Ontario , Temporal Lobe/diagnostic imaging , Thalamus/diagnostic imaging
6.
Cereb Cortex Commun ; 2(3): tgab048, 2021.
Article in English | MEDLINE | ID: mdl-34447935

ABSTRACT

How are different formats of magnitudes represented in the human brain? We used functional magnetic resonance imaging adaptation to isolate representations of symbols, quantities, and physical size in 45 adults. Results indicate that the neural correlates supporting the passive processing of number symbols are largely dissociable from those supporting quantities and physical size, anatomically and representationally. Anatomically, passive processing of quantities and size correlate with activation in the right intraparietal sulcus, whereas symbolic number processing, compared with quantity processing, correlates with activation in the left inferior parietal lobule. Representationally, neural patterns of activation supporting symbols are dissimilar from neural activation patterns supporting quantity and size in the bilateral parietal lobes. These findings challenge the longstanding notion that the culturally acquired ability to conceptualize symbolic numbers is represented using entirely the same brain systems that support the evolutionarily ancient system used to process quantities. Moreover, these data reveal that regions that support numerical magnitude processing are also important for the processing of non-numerical magnitudes. This discovery compels future investigations of the neural consequences of acquiring knowledge of symbolic numbers.

7.
Dev Cogn Neurosci ; 49: 100957, 2021 06.
Article in English | MEDLINE | ID: mdl-33894677

ABSTRACT

The present work considers how connectome-wide differences in brain organization might distinguish good and poor readers. The connectome comprises a 'rich-club' organization in which a small number of hub regions play a focal role in assisting global communication across the whole brain. Prior work indicates that this rich-club structure is associated with typical and impaired cognitive function although no work so far has examined how this relates to skilled reading or its disorders. Here we investigated the rich-club structure of brain's white matter connectome and its relationship to reading subskills in 64 children with and without reading disabilities. Among three types of white matter connections, the strength of feeder connections that connect hub and non-hub nodes was significantly correlated with word reading efficiency and phonemic decoding. Phonemic decoding was also positively correlated with connectivity between connectome-wide hubs and nodes within the left-hemisphere reading network, as well as the local efficiency of the reading network. Exploratory analyses also identified sex differences indicating these effects were stronger in girls. This work highlights the independent roles of connectome-wide structure and the more narrowly-defined reading network in understanding the neural bases of skilled and impaired reading in children.


Subject(s)
Reading , Brain , Child , Connectome , Diffusion Tensor Imaging , Female , Humans , Male , Neural Pathways , White Matter
8.
Res Dev Disabil ; 107: 103806, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33152663

ABSTRACT

Specific learning disorders (i.e., dyscalculia and dyslexia) are common, as is their comorbidity. It has been suggested that the core cognitive deficit in dyscalculia is an impairment in numerical magnitude processing; similarly, in dyslexia, phonological processing deficits are considered to be the main cognitive deficit. Cognitive theories on comorbid dyslexia/dyscalculia have suggested a number of hypotheses about which cognitive deficits underlie the comorbidity. However, few studies have thus far directly compared the abovementioned cognitive correlates of dyscalculia and dyslexia. In this study, we assessed symbolic and non-symbolic numerical magnitude and three subcomponents of phonological processing (phonological awareness, lexical access and verbal short-term memory). In addition, we investigated children's domain-general spatial and verbal skills. The effect of these cognitive correlates on dyscalculia, dyslexia and their comorbidity was explored. We did not find differences between children with and without dyscalculia on numerical magnitude processing. On the other hand, children with dyscalculia had significantly lower spatial skills compared to children without dyscalculia. Children with dyslexia performed significantly lower on all subcomponents of phonological processing. Finally, we found an additive effect for comorbid dyslexia/dyscalculia: impairments in children with co-occurring dyslexia and dyscalculia were similar to the sum of the impairments in the isolated dyslexia and isolated dyscalculia groups. The strongest unique predictor of isolated dyscalculia and comorbid dyslexia/dyscalculia was spatial skills, the strongest unique predictor of isolated dyslexia was phonological awareness. As only a limited number of cognitive variables were assessed in this study and the sample sizes were very small, we should be cautious when interpreting these results.


Subject(s)
Dyscalculia , Dyslexia , Specific Learning Disorder , Child , Dyscalculia/epidemiology , Dyslexia/epidemiology , Humans , Mathematics , Memory, Short-Term
9.
Trends Neurosci Educ ; 17: 100115, 2019 12.
Article in English | MEDLINE | ID: mdl-31685130

ABSTRACT

Specific learning disorders, such as dyslexia and dyscalculia, are frequently studied to inform our understanding of cognitive development, genetic mechanisms and brain function. In this Opinion Paper, we discuss limitations of this research approach, including the use of arbitrary criteria to select groups of children, heterogeneity within groups and overlap between domains of learning. By drawing on evidence from cognitive science, neuroscience and genetics, we propose an alternative, dimensional framework. We argue that we need to overcome the problems associated with a categorical approach by taking into account interacting factors at multiple levels of analysis that are associated with overlapping rather than entirely distinct domains of learning. We conclude that this research strategy will allow for a richer understanding of learning and development.


Subject(s)
Specific Learning Disorder/psychology , Child , Child, Preschool , Cognition , Developmental Disabilities , Dyscalculia , Dyslexia , Humans , Learning Disabilities/psychology
10.
Neuroimage Clin ; 18: 663-674, 2018.
Article in English | MEDLINE | ID: mdl-29876258

ABSTRACT

Brain disorders are often investigated in isolation, but very different conclusions might be reached when studies directly contrast multiple disorders. Here, we illustrate this in the context of specific learning disorders, such as dyscalculia and dyslexia. While children with dyscalculia show deficits in arithmetic, children with dyslexia present with reading difficulties. Furthermore, the comorbidity between dyslexia and dyscalculia is surprisingly high. Different hypotheses have been proposed on the origin of these disorders (number processing deficits in dyscalculia, phonological deficits in dyslexia) but these have never been directly contrasted in one brain imaging study. Therefore, we compared the brain activity of children with dyslexia, children with dyscalculia, children with comorbid dyslexia/dyscalculia and healthy controls during arithmetic in a design that allowed us to disentangle various processes that might be associated with the specific or common neural origins of these learning disorders. Participants were 62 children aged 9 to 12, 39 of whom had been clinically diagnosed with a specific learning disorder (dyscalculia and/or dyslexia). All children underwent fMRI scanning while performing an arithmetic task in different formats (dot arrays, digits and number words). At the behavioral level, children with dyscalculia showed lower accuracy when subtracting dot arrays, and all children with learning disorders were slower in responding compared to typically developing children (especially in symbolic formats). However, at the neural level, analyses pointed towards substantial neural similarity between children with learning disorders: Control children demonstrated higher activation levels in frontal and parietal areas than the three groups of children with learning disorders, regardless of the disorder. A direct comparison between the groups of children with learning disorders revealed similar levels of neural activation throughout the brain across these groups. Multivariate subject generalization analyses were used to statistically test the degree of similarity, and confirmed that the neural activation patterns of children with dyslexia, dyscalculia and dyslexia/dyscalculia were highly similar in how they deviated from neural activation patterns in control children. Collectively, these results suggest that, despite differences at the behavioral level, the brain activity profiles of children with different learning disorders during arithmetic may be more similar than initially thought.


Subject(s)
Brain/diagnostic imaging , Dyscalculia/diagnostic imaging , Dyslexia/diagnostic imaging , Mathematics , Problem Solving/physiology , Child , Female , Humans , Magnetic Resonance Imaging , Male
11.
J Exp Child Psychol ; 166: 232-250, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28946044

ABSTRACT

Although symbolic numerical magnitude processing skills are key for learning arithmetic, their developmental trajectories remain unknown. Therefore, we delineated during the first 3years of primary education (5-8years of age) groups with distinguishable developmental trajectories of symbolic numerical magnitude processing skills using a model-based clustering approach. Three clusters were identified and were labeled as inaccurate, accurate but slow, and accurate and fast. The clusters did not differ in age, sex, socioeconomic status, or IQ. We also tested whether these clusters differed in domain-specific (nonsymbolic magnitude processing and digit identification) and domain-general (visuospatial short-term memory, verbal working memory, and processing speed) cognitive competencies that might contribute to children's ability to (efficiently) process the numerical meaning of Arabic numerical symbols. We observed minor differences between clusters in these cognitive competencies except for verbal working memory for which no differences were observed. Follow-up analyses further revealed that the above-mentioned cognitive competencies did not merely account for the cluster differences in children's development of symbolic numerical magnitude processing skills, suggesting that other factors account for these individual differences. On the other hand, the three trajectories of symbolic numerical magnitude processing revealed remarkable and stable differences in children's arithmetic fact retrieval, which stresses the importance of symbolic numerical magnitude processing for learning arithmetic.


Subject(s)
Child Development , Cognition , Mathematics , Child , Female , Humans , Individuality , Male
12.
Dev Cogn Neurosci ; 30: 265-279, 2018 04.
Article in English | MEDLINE | ID: mdl-28566139

ABSTRACT

Brain imaging studies on academic achievement offer an exciting window on experience-dependent cortical plasticity, as they allow us to understand how developing brains change when children acquire culturally transmitted skills. This contribution focuses on the learning of arithmetic, which is quintessential to mathematical development. The nascent body of brain imaging studies reveals that arithmetic recruits a large set of interconnected areas, including prefrontal, posterior parietal, occipito-temporal and hippocampal areas. This network undergoes developmental changes in its function, connectivity and structure, which are not yet fully understood. This network only partially overlaps with what has been found in adults, and clear differences are observed in the recruitment of the hippocampus, which are related to the development of arithmetic fact retrieval. Despite these emerging trends, the literature remains scattered, particularly in the context of atypical development. Acknowledging the distributed nature of the arithmetic network, future studies should focus on connectivity and analytic approaches that investigate patterns of brain activity, coupled with a careful design of the arithmetic tasks and assessments of arithmetic strategies. Such studies will produce a more comprehensive understanding of how the arithmetical brain unfolds, how it changes over time, and how it is impaired in atypical development.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Mathematics/methods , Neuroimaging/methods , Brain/physiopathology , Child , Female , Humans , Learning , Male
13.
Hum Brain Mapp ; 38(9): 4657-4670, 2017 09.
Article in English | MEDLINE | ID: mdl-28626967

ABSTRACT

Arithmetic development is characterized by strategy shifts between procedural strategy use and fact retrieval. This study is the first to explicitly investigate children's neural activation associated with the use of these different strategies. Participants were 26 typically developing 4th graders (9- to 10-year-olds), who, in a behavioral session, were asked to verbally report on a trial-by-trial basis how they had solved 100 subtraction and multiplication items. These items were subsequently presented during functional magnetic resonance imaging. An event-related design allowed us to analyze the brain responses during retrieval and procedural trials, based on the children's verbal reports. During procedural strategy use, and more specifically for the decomposition of operands strategy, activation increases were observed in the inferior and superior parietal lobes (intraparietal sulci), inferior to superior frontal gyri, bilateral areas in the occipital lobe, and insular cortex. For retrieval, in comparison to procedural strategy use, we observed increased activity in the bilateral angular and supramarginal gyri, left middle to inferior temporal gyrus, right superior temporal gyrus, and superior medial frontal gyrus. No neural differences were found between the two operations under study. These results are the first in children to provide direct evidence for alternate neural activation when different arithmetic strategies are used and further unravel that previously found effects of operation on brain activity reflect differences in arithmetic strategy use. Hum Brain Mapp 38:4657-4670, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/physiology , Mathematical Concepts , Problem Solving/physiology , Brain/diagnostic imaging , Brain Mapping , Child , Female , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Reaction Time
14.
Neuropsychologia ; 86: 19-28, 2016 06.
Article in English | MEDLINE | ID: mdl-27044845

ABSTRACT

People process numbers in different formats, such as dot arrays (non-symbolic), Arabic digits and number words (symbolic), and use these representations when performing arithmetic calculations. It remains, however, unclear if and how these various presentation formats affect brain activity during arithmetic. We conducted an fMRI study in 23 typically developing children aged 9-12. The children were asked to subtract numbers up to 10 and had to compare the result to a reference number. Numbers were presented in non-symbolic (dot arrays), as well as symbolic formats (Arabic digits and number words). Our findings suggest that similar brain networks are recruited during arithmetic with different symbolic formats, i.e. Arabic digits and number words. On the other hand, there are clear differences between calculating with symbolic and non-symbolic formats. Specifically, calculating in symbolic formats showed increased activity in angular and supramarginal gyri, whereas arithmetic in the non-symbolic format showed increased activity in middle occipital and superior parietal lobes, as well as in superior frontal gyrus and insula. These differences in brain activity might be explained by differences in the strategies used to solve these arithmetic problems.


Subject(s)
Cerebral Cortex/physiology , Mathematics , Pattern Recognition, Visual/physiology , Symbolism , Analysis of Variance , Brain Mapping , Cerebral Cortex/diagnostic imaging , Child , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Oxygen/blood , Photic Stimulation , Vocabulary
15.
Front Hum Neurosci ; 9: 517, 2015.
Article in English | MEDLINE | ID: mdl-26441613

ABSTRACT

In this study, we investigated how Arabic digits are represented in the visual cortex, and how their representation changes throughout the ventral visual processing stream, compared to the representation of letters. We probed these questions with two functional magnetic resonance imaging (fMRI) experiments. In Experiment 1, we explored whether we could find brain regions that were more activated for digits than for number words in a subtraction task. One such region was detected in lateral occipital cortex. However, the activity in this region might have been confounded by string length-number words contain more characters than digits. We therefore conducted a second experiment in which string length was systematically controlled. Experiment 2 revealed that the findings of the first experiment were task dependent (as it was only observed in a task in which numerosity was relevant) or stimulus dependent (as it was only observed when the number of characters of a stimulus was not controlled). We further explored the characteristics of the activation patterns for digit and letter strings across the ventral visual processing stream through multi-voxel pattern analyses. We found an alteration in representations throughout the ventral processing stream from clustering based on amount of visual information in primary visual cortex (V1) towards clustering based on symbolic stimulus category higher in the visual hierarchy. The present findings converge to the conclusion that in the ventral visual system, as far as can be detected with fMRI, the distinction between Arabic digits and letter strings is represented in terms of distributed patterns rather than separate regions.

16.
Conscious Cogn ; 33: 112-24, 2015 May.
Article in English | MEDLINE | ID: mdl-25555290

ABSTRACT

Five experiments investigated the cognitive processes involved in the elaboration of past and future events. A production listing procedure was used, in which participants listed details of each event in forwards chronological order, backwards chronological order, or free order. For both past and future events, forwards and free ordering conditions were reliably faster than backwards order. Production rates between past and future temporal directions did not differ in Experiments 1a, 1b, and 3. However, in Experiment 2, the elaboration of future events was faster than the elaboration of past events. This pattern can be explained by the findings of Experiment 4, in which production rates were faster for likely events than for unlikely events but only in the future condition. Overall, the findings suggest that the elaboration of future, but not past, events, is facilitated when constructed around current goals.


Subject(s)
Imagination , Memory, Episodic , Adolescent , Adult , Female , Forecasting , Humans , Male , Mental Recall , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...