Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Langmuir ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814099

ABSTRACT

We have red-shifted the light absorbance property of a Re(I)-tricarbonyl complex via distant conjugation of a ferrocene moiety and developed a novel complex ReFctp, [Re(Fctp)(CO)3Cl], where Fctp = 4'-ferrocenyl-2,2':6',2″-terpyridine. ReFctp showed green to red light absorption ability and blue emission, indicating its potential for photodynamic therapy (PDT) application. The conjugation of ferrocene introduced ferrocene-based transitions, which lie at a higher wavelength within the PDT therapeutic window. The time-dependent density functional theory and excited state calculations revealed an efficient intersystem crossing for ReFctp, which is helpful for PDT. ReFctp elicited both PDT type I and type II pathways for reactive oxygen species (ROS) generation and facilitated NADH (1,4-dihydro-nicotinamide adenine dinucleotide) oxidation upon exposure to visible light. Importantly, ReFctp showed effective penetration through the layers of clinically relevant 3D multicellular tumor spheroids and localized primarily in mitochondria (Pearson's correlation coefficient, PCC = 0.65) of A549 cancer cells. ReFctp produced more than 20 times higher phototoxicity (IC50 ∼1.5 µM) by inducing ROS generation and altering mitochondrial membrane potential in A549 cancer cells than the nonferrocene analogue Retp, [Re(CO)3(tp)Cl], where tp = 2,2':6',2″-terpyridine. ReFctp induced apoptotic mode of cell death with a notable photocytotoxicity index (PI, PI = IC50dark/IC50light) and selectivity index (SI, SI = normal cell's IC50dark/cancer cell's IC50light) in the range of 25-33.

2.
J Med Chem ; 67(8): 6537-6548, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38603561

ABSTRACT

Herein, we have compared the effectivity of light-based photoactivated cancer therapy and ultrasound-based sonodynamic therapy with Re(I)-tricarbonyl complexes (Re1-Re3) against cancer cells. The observed photophysical and TD-DFT calculations indicated the potential of Re1-Re3 to act as good anticancer agents under visible light/ultrasound exposure. Re1 did not display any dark- or light- or ultrasound-triggered anticancer activity. However, Re2 and Re3 displayed concentration-dependent anticancer activity upon light and ultrasound exposure. Interestingly, Re3 produced 1O2 and OH• on light/ultrasound exposure. Moreover, Re3 induced NADH photo-oxidation in PBS and produced H2O2. To the best of our knowledge, NADH photo-oxidation has been achieved here with the Re(I) complex for the first time in PBS. Additionally, Re3 released CO upon light/ultrasound exposure. The cell death mechanism revealed that Re3 produced an apoptotic cell death response in HeLa cells via ROS generation. Interestingly, Re3 showed slightly better anticancer activity under light exposure compared to ultrasound exposure.


Subject(s)
Antineoplastic Agents , Phenanthrolines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ligands , HeLa Cells , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Rhenium/chemistry , Rhenium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Apoptosis/drug effects , Light , Reactive Oxygen Species/metabolism , Ultrasonic Therapy , Photochemotherapy , Drug Screening Assays, Antitumor , Neoplasms/drug therapy
3.
Chem Commun (Camb) ; 60(33): 4435-4438, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38563393

ABSTRACT

Sulphidation of a CuNi alloy of Cu : Ni ratio 81 : 19 led to an exponential activity enhancement in the alkaline methanol oxidation reaction (MOR) by four fold due to an order of magnitude increase in the number of active Cu and Ni sites and improved charge transfer properties.

4.
Inorg Chem ; 63(16): 7493-7503, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38578920

ABSTRACT

The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440-600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 µM and 88, respectively, under white light irradiation and ca. 1.9 µM and 35 under green light irradiation against HeLa cells. The complexes (Ru1-Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 µM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Light , Pyridines , Ruthenium , Humans , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Catalysis , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Drug Screening Assays, Antitumor , Green Light , HeLa Cells , Molecular Structure , Photochemical Processes , Pyridines/chemistry , Pyridines/pharmacology , Reactive Oxygen Species/metabolism , Ruthenium/chemistry , Ruthenium/pharmacology
5.
Phys Chem Chem Phys ; 26(13): 10301-10309, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38497996

ABSTRACT

Transition metal dichalcogenides (TMDs) are fascinating and prodigious considerations in the electrochemical energy storage sector because of their two dimensional chemistry as well as heterogeneous characteristics. Herein, we synthesized interconnected WS2 nanosheets by a hydrothermal method followed by sulphuration at 850 °C in an argon atmosphere. The ultrathin WS2 nanosheet array is endowed with an excellent specific capacitance of 74 F g-1 at the current density of 3 A g-1 up 7000 cycles. Moreover, a symmetric supercapacitor was fabricated using WS2 nanosheets, which provided the admirable high specific capacity of 6.3 F g-1 at 0.05 A g-1 with the energy and power density of 5.6 × 102 mW h kg-1 and 3.6 × 10 5 mW kg-1, respectively. Density functional theory (DFT) simulations revealed the presence of populated energy states near the Fermi level resulting in a high quantum capacitance value, which supports the experimentally achieved high capacitance value. The attained results recommend interconnected WS2 nanosheets as a novel, robust, and low-cost electrode material for supercapacitor energy storage devices.

6.
Sci Rep ; 14(1): 5642, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453953

ABSTRACT

There is a mounting demand for nonlinear optical materials with superior optical limiting performance which has a noticeable impact on protecting the delicate optical components from laser-induced damage. Transition metal molybdates have garnered attention in the nonlinear optics field due to their outstanding optical and luminescent properties, which give rise to widespread applications in next-generation optoelectronics devices. The structural confirmation of the as prepared silver molybdate nanoparticles were made by XRD and Raman spectroscopy analysis. The linear optical properties and the band gap of the synthesized material were studied using UV-Visible and photoluminescence spectroscopy. SEM analysis revealed the pebble like morphology of the silver molybdate nanostructures. The nonlinear responses of the samples were studied using open aperture z-scan approach with Nd:YAG pulsed laser (532 nm, 9 ns, 10 Hz). The sample exhibits reverse saturable absorption pattern attributed to the two photon absorption (2PA) mechanism. The obtained OL threshold value is in the order of 1012 which is suitable for fabricating optical limiters in nano second pulsed laser regime.

7.
J Phys Chem B ; 127(48): 10266-10278, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37988143

ABSTRACT

Photodynamic therapy (PDT) has evolved as a new therapeutic modality for cancer treatment with fewer side effects and drug resistance. Curcumin exhibits PDT activity, but its low bioavailability restricts its clinical application. Here, the bioavailability of curcumin was increased by its complex formation with the Zn(II) center. For a structure-activity relationship study, Zn(II)-based complexes (1-3) comprising N^N-based ligands (2,2'-bipyridine in 1 and 2 or 1,10-phenanthroline in 3) and O^O-based ligands (acetylacetone in 1, monoanionic curcumin in 2 and 3) were synthesized and thoroughly characterized. The X-ray structure of the control complex, 1, indicated a square pyramidal shape of the molecules. Photophysical and TD-DFT studies indicated the potential of 2 and 3 as good visible light type-II photosensitizers for PDT. Guided by the TD-DFT studies, the low-energy visible light-triggered singlet oxygen (1O2) generation efficacy of 2 and 3 was explored in solution and in cancer cells. As predicted by the TD-DFT calculations, these complexes produced 1O2 efficiently in the cytosol of MCF-7 cancer cells and ultimately displayed excellent apoptotic anticancer activity in the presence of light. Moreover, the molecular docking investigation showed that complexes 2 and 3 have very good binding affinities with caspase-9 and p-53 proteins and could activate them for cellular apoptosis. Further molecular dynamics simulations confirmed the stability of 3 in the caspase-9 protein binding site.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Curcumin , Photochemotherapy , Humans , Curcumin/pharmacology , Density Functional Theory , Zinc/chemistry , Caspase 9/metabolism , Molecular Docking Simulation , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Coordination Complexes/chemistry , Antineoplastic Agents/chemistry
8.
Langmuir ; 39(4): 1373-1385, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36652696

ABSTRACT

One of the important understandings of porous solids like metal-organic frameworks (MOFs) is their flexibility. Therefore, there are certain computational studies on flexible MOFs in the literature, primarily concentrating on MIL-53, UiO-66, and DUT-49. Here, investigation of another class of MOF, that is, [Ni(1,4-pyrazine)2(AlF5)]n, was shown to have guest-induced flexible characteristics; nevertheless, the mechanism for the emergence of flexibility is uncertain. We simulated the structural flexibility of [Ni(1,4-pyrazine)2(AlF5)]n, named ALFFIVE-Ni-pyr-TBP, upon adsorption of a guest molecule based on force fields using the molecular dynamics (MD) method and Monte Carlo (MC) simulations. As the first step towards understanding guest-induced flexibility, the MC simulations were performed by relaxing the framework and then further comparing it with the rigid framework. Subsequently, MD simulations were executed on the ALFFIVE-Ni-pyr-TBP framework with and without the guest molecules. In the case of moisture adsorption, the MOF system was identified to undergo a geometric transformation from trigonal bipyramidal to square bipyramidal geometry due to the strong interaction of oxygen of the water with the metal aluminum. However, some tilting in the pyrazine ligand was observed in the presence of all the guest molecules. Therefore, the detailed guest-induced flexibility described in this work could support the ALFFIVE series to be explored for future adsorption applications.

9.
Phys Chem Chem Phys ; 24(36): 21812-21821, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36063199

ABSTRACT

The separation of mixtures of isomers is a daunting task. It is found that perethylated pillar[5]arene can separate trans-dichloroethene from its cis isomer. This work deals with the host-guest interactions and the selective separation of trans dihaloethene over cis-dihaloethene using perethylated pillar[5]arene. From this work, one can understand why only trans dihaloethenes are encapsulated while cis-dihaloethenes are not. Initially, molecular dynamics was performed at different picoseconds for the 1 : 1 inclusion complexes. In addition to these, MD simulation on a mixture of cis & trans isomers has also been done to ensure the preferential selectivity of perethylated pillar[5]arene towards the trans isomer. A brief DFT study was carried out to explain the better encapsulation of trans-dihaloethene in perethylated pillar[5]arene. Frontier molecular orbital analysis provides information on the stability and reactivity of the dihaloethene isomers. The non-covalent interactions between the host and the guest are determined using the quantum theory of atoms in molecules. Energy decomposition analysis indicates that the solvent phase influences the binding energy to a greater extent compared to the gas phase and orbital interaction energies are reduced substantially upon moving from the gas to the solvent phase. The Gibbs free energy indicates that these isomers readily form inclusion complexes with perethylated pillar[5]arene. Overall our results provide valuable information on the non-covalent interactions that drive the inclusion phenomenon in these host-guest systems.

10.
ACS Appl Bio Mater ; 5(7): 3241-3256, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35786838

ABSTRACT

The organometallic compounds are prospective candidates in the row of developing metallochemotherapeutics with the aim of overcoming the limitations of platinum drugs. In order to explore the anticancer properties of organometallic compounds with the natural medicines, two Ru(II)-p-cymene complexes containing the natural products, viz., 6-gingerol (6G) and benzylated-6-gingerdione (B-6GD) have been synthesized and characterized well. The phenolic group of the Ru(6G) complex facilitates its higher cell-free antioxidant activity than its analogue complex. Also, the same complex shows higher cytotoxicity toward A549 lung and HeLa-S3 cervical cancer cells than the Ru(B-6GD) complex but lower cytotoxicity toward A2058 metastatic melanoma cancer cells. Both complexes are shown to easily accumulate in melanoma cancer cells, and their degree of cytotoxicity in the same cells is found to be positively correlated with cell uptake. The cytotoxicity of complexes arises from their intracellular activity, mainly due to the induction of singlet oxygen production in cancer cells. The subcellular fractionation study shows that mitochondria and ER-Golgi membranes might be their predominant targets. Also, the mechanistic investigation revealed that Ru(B-6GD) induces caspase-dependent non-apoptotic cell death whereas Ru(6G) can induce caspase-independent non-apoptotic cell death. Furthermore, both complexes are found to moderately alter the adhesion properties of cancer cells, which is beneficial for antimetastatic treatment. Despite the potential pharmacological activity, Ru(6G) is encapsulated into polymer-supported liposomes to reduce its toxicity and further improve its anticancer potency. The π-conjugated yne-ene chain of polydiacetylene aids in the development of a stable nanoformulation, which achieved a slow release of the complex. Most importantly, the cancer cell uptake of the liposome-encapsulated Ru(6G) complex is 20 times enhanced and the total ROS formation in cancer cells is significantly increased compared to the non-encapsulated complex. However, the nanoformulation does not alter the antimetastatic potency of the encapsulated complex.


Subject(s)
Antineoplastic Agents , Biological Products , Melanoma , Organometallic Compounds , Ruthenium , Zingiber officinale , Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation , Cymenes , Zingiber officinale/metabolism , Humans , Liposomes/pharmacology , Molecular Structure , Organometallic Compounds/pharmacology , Prospective Studies , Ruthenium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...