Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(19): 31410-31418, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710661

ABSTRACT

New, hard x-ray free electron lasers (FEL) produce intense femtosecond-to-attosecond pulses at angstrom wavelengths, giving access to the fundamental spatial and temporal scales of matter. These revolutionary light sources open the door to applying the suite of nonlinear, optical spectroscopy methods at hard x-ray photon energies. Nonlinear spectroscopy with hard x-rays can allow for measuring the coherence properties of short wavelength excitations with atomic specificity and for understanding how high energy excitations couple to other degrees of freedom in atomic, molecular or condensed-phase systems. As a step in this direction, here we present hard x-ray, optical four-wave mixing (4WM) measurements done at 9.8 keV at the split-and-delay line at the x-ray correlation spectroscopy (XCS) hutch of the Linac Coherent Light Source (LCLS). In this work, we create an x-ray transient grating (TG) from a pair of crossing x-ray beams and diffract optical laser pulses at 400 nm from the TG. The key technical advance here is being able to independently vary the delays of the x-ray pulses. Measurements were made in 3 different solid samples: bismuth germinate (BGO), zinc oxide (ZnO) and yttrium aluminum garnet (YAG). The resulting phase-matched, 4WM signal is measured in two different ways: by varying the x-ray, x-ray pulse delay which can reveal both material and light source coherence properties and also by varying the optical laser delay with respect to the x-ray TG to study how the x-ray excitation couples to the optical properties. Although no coherent 4WM signal was seen in these measurements, the absence of this signal gives important information on experimental requirements for detecting this in future work. Also, our laser-delay scans, although not a new measurement, were applied to different materials than in past work and reveal new examples x-ray induced lattice dynamics in solids. This work represents a key step towards extending nonlinear optics and time-resolved spectroscopy into the hard x-ray regime.

2.
Opt Express ; 29(8): 11394-11405, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33984919

ABSTRACT

Frequency-resolved optical gating (FROG) is a common technique for measuring ultrashort laser pulses using an instantaneous, nonlinear-optical interaction as a fast time-gate to measure the pulse intensity and phase. But at high frequencies, materials are often absorbing and it is not always possible to find a medium with a fast nonlinear-optical response. Here we show that an ultrashort, ultraviolet (UV) pulse can be measured in a strongly absorbing medium, using the absorption as the nonlinear-optical time-gate. To do this, we build on our recent implementation of FROG, known as induced-grating cross-correlation FROG (IG XFROG), where an unknown, higher-frequency pulse creates a transient grating that is probed with a lower-frequency, more easily detectable reference pulse. We demonstrate this with an 800 nm reference pulse to characterize 400 nm or 267 nm pulses using ZnS as the nonlinear-optical medium, which is absorptive at and below 400 nm. By scanning the delay between the two UV pulses which create the transient grating, we show that the phase-sensitive instantaneous four-wave-mixing contribution to the nonlinear signal field can be detected and separated from the slower, incoherent part of the response. Measuring a spectrally-resolved cross-correlation in this way and then applying a simple model for the response of the medium, we show that a modified generalized projections (GP) phase-retrieval algorithm can be used to extract the pulse amplitude and phase. We test this approach by measuring chirped UV pulses centered at 400 nm and 267 nm. Since interband absorption (or even photoionization) is not strongly wavelength-dependent, we expect IG XFROG to be applicable deeper into the UV.

3.
Opt Express ; 28(18): 26850-26860, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906951

ABSTRACT

We introduce a variation on the cross-correlation frequency-resolved optical gating (XFROG) technique that uses a near-infrared (NIR) nonlinear-optical signal to characterize pulses in the ultraviolet (UV). Using a transient-grating XFROG beam geometry, we create a grating using two copies of the unknown UV pulse and diffract a NIR reference pulse from it. We show that, by varying the delay between the UV pulses creating the grating, the UV pulse intensity-and-phase information can be encoded into a NIR signal. We also implemented a modified generalized-projections phase-retrieval algorithm for retrieving the UV pulses from these spectrograms. We performed proof-of-principle measurements of chirped pulses and double pulses, all at 400 nm. This approach should be extendable deeper into the UV and potentially even into the extreme UV or x-ray range.

4.
Phys Chem Chem Phys ; 22(21): 11838-11849, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32426777

ABSTRACT

Recent observations of chloromethane in interstellar environments suggest that other organohalogens, which are known to be critically important in Earth's atmosphere, may also be of significance beyond our own terrestrial veil. This raises the question of how such molecules behave under extreme conditions such as when exposed to vacuum ultraviolet (VUV) radiation. VUV photons promote molecules to highly excited states that fragment in non-statistical patterns controlled by the initial femtosecond dynamics. A detailed understanding of VUV-driven photochemistry in complex organic molecules that consist of more than one functional group is a particularly challenging task. This quantum chemical analysis reports the electronic states and ionization potentials up to the VUV range (6-11 eV) of the chlorine-substituted cumulenone series molecules. The valence and Rydberg properties of lone-pair terminated, π-conjugated systems are explored for their potential resonance with lone pairs from elsewhere in the system. The carbon chain elongation within the family ClHCnO, where n = 1-4, influences the electronic excitations, associated wavefunctions, and ionization potentials of the molecules. The predicted geometries and ionization potentials are in good agreement with the available experimental photoelectron spectra for formyl chloride and chloroketene, n = 1-2. Furthermore, comparison between the regular cumulenone species and the corresponding chlorinated derivatives exhibit similar behaviors especially for n = 3, where the allene backbone in propadienone chloride is severely bent. Most notably for the excited states is that the Rydberg character becomes more dominant as the energy increases, with some retaining valence characters.

5.
Proc Natl Acad Sci U S A ; 114(52): E11072-E11081, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29109279

ABSTRACT

Highly excited electronic states are challenging to explore experimentally and theoretically-due to the large density of states and the fact that small structural changes lead to large changes in electronic character with associated strong nonadiabatic dynamics. They can play a key role in astrophysical and ionospheric chemistry, as well as the detonation chemistry of high-energy density materials. Here, we implement ultrafast vacuum-UV (VUV)-driven electron-ion coincidence imaging spectroscopy to directly probe the reaction pathways of highly excited states of energetic molecules-in this case, methyl azide. Our data, combined with advanced theoretical simulations, show that photoexcitation of methyl azide by a 10-fs UV pulse at 8 eV drives fast structural changes and strong nonadiabatic coupling that leads to relaxation to other excited states on a surprisingly fast timescale of 25 fs. This ultrafast relaxation differs from dynamics occurring on lower excited states, where the timescale required for the wavepacket to reach a region of strong nonadiabatic coupling is typically much longer. Moreover, our theoretical calculations show that ultrafast relaxation of the wavepacket to a lower excited state occurs along one of the conical intersection seams before reaching the minimum energy conical intersection. These findings are important for understanding the unique strongly coupled non-Born-Oppenheimer molecular dynamics of VUV-excited energetic molecules. Although such observations have been predicted for many years, this study represents one of the few where such strongly coupled non-Born-Oppenheimer molecular dynamics of VUV-excited energetic molecules have been conclusively observed directly, making it possible to identify the ultrafast reaction pathways.

6.
J Chem Phys ; 147(19): 194306, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29166106

ABSTRACT

The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.

7.
J Chem Phys ; 147(15): 154308, 2017 Oct 21.
Article in English | MEDLINE | ID: mdl-29055315

ABSTRACT

Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

8.
Rev Sci Instrum ; 88(6): 064101, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28667957

ABSTRACT

In laser spectroscopy, high photon flux can perturb the sample away from thermal equilibrium, altering its spectroscopic properties. Here, we describe an optical beam scanning apparatus that minimizes repetitive sample excitation while providing shot-to-shot sample exchange for samples such as cryostats, films, and air-tight cuvettes. In this apparatus, the beam crossing point is moved within the focal plane inside the sample by scanning both tilt angles of a flat mirror. A space-filling spiral scan pattern was designed that efficiently utilizes the sample area and mirror scanning bandwidth. Scanning beams along a spiral path is shown to increase the average number of laser shots that can be sampled before a spot on the sample cell is resampled by the laser to ∼1700 (out of the maximum possible 2500 for the sample area and laser spot size) while ensuring minimal shot-to-shot spatial overlap. Both an all-refractive version and an all-reflective version of the apparatus are demonstrated. The beam scanning apparatus does not measurably alter the time delay (less than the 0.4 fs measurement uncertainty), the laser focal spot size (less than the 2 µm measurement uncertainty), or the beam overlap (less than the 3.3% measurement uncertainty), leading to pump-probe and autocorrelation signal transients that accurately characterize the equilibrium sample.

9.
J Phys Chem A ; 121(28): 5280-5289, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28661692

ABSTRACT

We report the combination of tabletop vacuum ultraviolet photoionization with photoion-photoelectron coincidence spectroscopy for sensitive, isomer-specific detection of nascent products from a pyrolysis microreactor. Results on several molecules demonstrate two essential capabilities that are very straightforward to implement: the ability to differentiate isomers and the ability to distinguish thermal products from dissociative ionization. Here, vacuum ultraviolet light is derived from a commercial tabletop femtosecond laser system, allowing data to be collected at 10 kHz; this high repetition rate is critical for coincidence techniques. The photoion-photoelectron coincidence spectrometer uses the momentum of the ion to identify dissociative ionization events and coincidence techniques to provide a photoelectron spectrum specific to each mass, which is used to distinguish different isomers. We have used this spectrometer to detect the pyrolysis products that result from the thermal cracking of acetaldehyde, cyclohexene, and 2-butanol. The photoion-photoelectron spectrometer can detect and identify organic radicals and reactive intermediates that result from pyrolysis. Direct comparison of laboratory and synchrotron data illustrates the advantages and potential of this approach.

10.
J Phys Chem A ; 121(12): 2361-2366, 2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28267341

ABSTRACT

Understanding the ultrafast dynamics of highly excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highly excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both ny → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.

12.
J Phys Chem A ; 117(29): 6332-45, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23713582

ABSTRACT

The absolute femtosecond pump-probe signal strength of deprotonated fluorescein in basic methanol is measured. Calculations of the absolute pump-probe signal based on the steady-state absorption and emission spectrum that use only independently measured experimental parameters are carried out. The calculation of the pump-probe signal strength assumes the pump and probe fields are both weak and includes the following factors: the transverse spatial profile of the laser beams; the pulse spectra; attenuation of the propagating pulses with depth in the sample; the anisotropic transition probability for polarized light; and time-dependent electronic population relaxation. After vibrational and solvent relaxation are complete, the calculation matches the measurement to within 10% error without any adjustable parameters. This demonstrates quantitative measurement of absolute excited state population.

13.
Proc Natl Acad Sci U S A ; 110(4): 1203-8, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23267114

ABSTRACT

The delocalized, anticorrelated component of pigment vibrations can drive nonadiabatic electronic energy transfer in photosynthetic light-harvesting antennas. In femtosecond experiments, this energy transfer mechanism leads to excitation of delocalized, anticorrelated vibrational wavepackets on the ground electronic state that exhibit not only 2D spectroscopic signatures attributed to electronic coherence and oscillatory quantum energy transport but also a cross-peak asymmetry not previously explained by theory. A number of antennas have electronic energy gaps matching a pigment vibrational frequency with a small vibrational coordinate change on electronic excitation. Such photosynthetic energy transfer steps resemble molecular internal conversion through a nested intermolecular funnel.


Subject(s)
Photosynthesis/physiology , Electron Transport , Electrons , Energy Transfer , Models, Biological , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Quantum Theory , Spectrum Analysis , Vibration
14.
Nano Lett ; 10(7): 2498-505, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20550102

ABSTRACT

Hot electronic dynamics in lead sulfide nanocrystals is interrogated by degenerate pump-probe spectroscopy with 20-25 fs pulses over a broad frequency range around three times the nanocrystal band gap. For each nanocrystal diameter, an initial reduction in absorption is seen only at the peak of the quantum confined E1 transition, while increased absorption is seen at all other wavelengths. The signals from the nanocrystals are approximately 300 times weaker than expected for a two-level system with the same absorbance and molar extinction coefficient and are weaker near time zero. These results appear to be inconsistent with quantum confinement of the initially excited high energy states. Arguments based on carrier scattering length, the wave packet size supported by the band structure, and effective mass are advanced to support the hypothesis that, for many direct-gap semiconductor quantum dots, the carrier dynamics at three times the band gap is localized on the 1-2 nm length scale and essentially bulklike except for frequent collisions with the surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...