Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Crit Care ; 28(1): 88, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38504349

ABSTRACT

BACKGROUND: Sepsis is a life-threatening condition arising from an aberrant host response to infection. Recent single-cell RNA sequencing investigations identified an immature bone-marrow-derived CD14+ monocyte phenotype with immune suppressive properties termed "monocyte state 1" (MS1) in patients with sepsis. Our objective was to determine the association of MS1 cell profiles with disease presentation, outcomes, and host response characteristics. METHODS: We used the transcriptome deconvolution method (CIBERSORTx) to estimate the percentage of MS1 cells from blood RNA profiles of patients with sepsis admitted to the intensive care unit (ICU). We compared these profiles to ICU patients without infection and to healthy controls. Host response dysregulation was further studied by gene co-expression network and gene set enrichment analyses of blood leukocytes, and measurement of 15 plasma biomarkers indicative of pathways implicated in sepsis pathogenesis. RESULTS: Sepsis patients (n = 332) were divided into three equally-sized groups based on their MS1 cell levels (low, intermediate, and high). MS1 groups did not differ in demographics or comorbidities. The intermediate and high MS1 groups presented with higher disease severity and more often had shock. MS1 cell abundance did not differ between survivors and non-survivors, or between patients who did or did not acquire a secondary infection. Higher MS1 cell percentages were associated with downregulation of lymphocyte-related and interferon response genes in blood leukocytes, with concurrent upregulation of inflammatory response pathways, including tumor necrosis factor signaling via nuclear factor-κB. Previously described sepsis host response transcriptomic subtypes showed different MS1 cell abundances, and MS1 cell percentages positively correlated with the "quantitative sepsis response signature" and "molecular degree of perturbation" scores. Plasma biomarker levels, indicative of inflammation, endothelial cell activation, and coagulation activation, were largely similar between MS1 groups. In ICU patients without infection (n = 215), MS1 cell percentages and their relation with disease severity, shock, and host response dysregulation were highly similar to those in sepsis patients. CONCLUSIONS: High MS1 cell percentages are associated with increased disease severity and shock in critically ill patients with sepsis or a non-infectious condition. High MS1 cell abundance likely indicates broad immune dysregulation, entailing not only immunosuppression but also anomalies reflecting exaggerated inflammatory responses.


Subject(s)
Monocytes , Sepsis , Humans , Critical Illness , Sepsis/complications , Biomarkers , Leukocytes , Intensive Care Units
2.
JCI Insight ; 9(4)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385743

ABSTRACT

The lipidome of immune cells during infection has remained unexplored, although evidence of the importance of lipids in the context of immunity is mounting. In this study, we performed untargeted lipidomic analysis of blood monocytes and neutrophils from patients hospitalized for pneumonia and age- and sex-matched noninfectious control volunteers. We annotated 521 and 706 lipids in monocytes and neutrophils, respectively, which were normalized to an extensive set of internal standards per lipid class. The cellular lipidomes were profoundly altered in patients, with both common and distinct changes between the cell types. Changes involved every level of the cellular lipidome: differential lipid species, class-wide shifts, and altered saturation patterns. Overall, differential lipids were mainly less abundant in monocytes and more abundant in neutrophils from patients. One month after hospital admission, lipidomic changes were fully resolved in monocytes and partially in neutrophils. Integration of lipidomic and concurrently collected transcriptomic data highlighted altered sphingolipid metabolism in both cell types. Inhibition of ceramide and sphingosine-1-phosphate synthesis in healthy monocytes and neutrophils resulted in blunted cytokine responses upon stimulation with lipopolysaccharide. These data reveal major lipidomic remodeling in immune cells during infection, and link the cellular lipidome to immune functionality.


Subject(s)
Monocytes , Pneumonia , Humans , Neutrophils , Lipidomics , Lipopolysaccharides
3.
Am J Respir Crit Care Med ; 209(8): 973-986, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38240721

ABSTRACT

Rationale: The plasma lipidome has the potential to reflect many facets of the host status during severe infection. Previous work is limited to specific lipid groups or was focused on lipids as prognosticators.Objectives: To map the plasma lipidome during sepsis due to community-acquired pneumonia (CAP) and determine the disease specificity and associations with clinical features.Methods: We analyzed 1,833 lipid species across 33 classes in 169 patients admitted to the ICU with sepsis due to CAP, 51 noninfected ICU patients, and 48 outpatient controls. In a paired analysis, we reanalyzed patients still in the ICU 4 days after admission (n = 82).Measurements and Main Results: A total of 58% of plasma lipids were significantly lower in patients with CAP-attributable sepsis compared with outpatient controls (6% higher, 36% not different). We found strong lipid class-specific associations with disease severity, validated across two external cohorts, and inflammatory biomarkers, in which triacylglycerols, cholesterol esters, and lysophospholipids exhibited the strongest associations. A total of 36% of lipids increased over time, and stratification by survival revealed diverging lipid recovery, which was confirmed in an external cohort; specifically, a 10% increase in cholesterol ester levels was related to a lower odds ratio (0.84; P = 0.006) for 30-day mortality (absolute mortality, 18 of 82). Comparison with noninfected ICU patients delineated a substantial common illness response (57.5%) and a distinct lipidomic signal for patients with CAP-attributable sepsis (37%).Conclusions: Patients with sepsis due to CAP exhibit a time-dependent and partially disease-specific shift in their plasma lipidome that correlates with disease severity and systemic inflammation and is associated with higher mortality.


Subject(s)
Community-Acquired Infections , Pneumonia , Sepsis , Humans , Lipidomics , Pneumonia/complications , Sepsis/complications , Lipids , Severity of Illness Index , Intensive Care Units
4.
Am J Respir Crit Care Med ; 209(4): 402-416, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37948687

ABSTRACT

Rationale: Lymphopenia in coronavirus disease (COVID-19) is associated with increased mortality. Objectives: To explore the association between lymphopenia, host response aberrations, and mortality in patients with lymphopenic COVID-19. Methods: We determined 43 plasma biomarkers reflective of four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, cytokine release, and chemokine release. We explored if decreased concentrations of lymphocyte-derived proteins in patients with lymphopenia were associated with an increase in mortality. We sought to identify host response phenotypes in patients with lymphopenia by cluster analysis of plasma biomarkers. Measurements and Main Results: A total of 439 general ward patients with COVID-19 were stratified by baseline lymphocyte counts: normal (>1.0 × 109/L; n = 167), mild lymphopenia (>0.5 to ⩽1.0 × 109/L; n = 194), and severe lymphopenia (⩽0.5 × 109/L; n = 78). Lymphopenia was associated with alterations in each host response domain. Lymphopenia was associated with increased mortality. Moreover, in patients with lymphopenia (n = 272), decreased concentrations of several lymphocyte-derived proteins (e.g., CCL5, IL-4, IL-13, IL-17A) were associated with an increase in mortality (at P < 0.01 or stronger significance levels). A cluster analysis revealed three host response phenotypes in patients with lymphopenia: "hyporesponsive" (23.2%), "hypercytokinemic" (36.4%), and "inflammatory-injurious" (40.4%), with substantially differing mortality rates of 9.5%, 5.1%, and 26.4%, respectively. A 10-biomarker model accurately predicted these host response phenotypes in an external cohort with similar mortality distribution. The inflammatory-injurious phenotype showed a remarkable combination of relatively high inflammation and organ damage markers with high antiinflammatory cytokine levels yet low proinflammatory cytokine levels. Conclusions: Lymphopenia in COVID-19 signifies a heterogenous group of patients with distinct host response features. Specific host responses contribute to lymphopenia-associated mortality in COVID-19, including reduced CCL5 levels.


Subject(s)
Anemia , COVID-19 , Lymphopenia , Humans , COVID-19/complications , SARS-CoV-2 , Lymphopenia/complications , Cytokines , Inflammation/complications , Biomarkers , Anemia/complications
6.
Intensive Care Med ; 49(11): 1360-1369, 2023 11.
Article in English | MEDLINE | ID: mdl-37851064

ABSTRACT

PURPOSE: The heterogeneity in sepsis is held responsible, in part, for the lack of precision treatment. Many attempts to identify subtypes of sepsis patients identify those with shared underlying biology or outcomes. To date, though, there has been limited effort to determine overlap across these previously identified subtypes. We aimed to determine the concordance of critically ill patients with sepsis classified by four previously described subtype strategies. METHODS: This secondary analysis of a multicenter prospective observational study included 522 critically ill patients with sepsis assigned to four previously established subtype strategies, primarily based on: (i) clinical data in the electronic health record (α, ß, γ, and δ), (ii) biomarker data (hyper- and hypoinflammatory), and (iii-iv) transcriptomic data (Mars1-Mars4 and SRS1-SRS2). Concordance was studied between different subtype labels, clinical characteristics, biological host response aberrations, as well as combinations of subtypes by sepsis ensembles. RESULTS: All four subtype labels could be adjudicated in this cohort, with the distribution of the clinical subtype varying most from the original cohort. The most common subtypes in each of the four strategies were γ (61%), which is higher compared to the original classification, hypoinflammatory (60%), Mars2 (35%), and SRS2 (54%). There was no clear relationship between any of the subtyping approaches (Cramer's V = 0.086-0.456). Mars2 and SRS1 were most alike in terms of host response biomarkers (p = 0.079-0.424), while other subtype strategies showed no clear relationship. Patients enriched for multiple subtypes revealed that characteristics and outcomes differ dependent on the combination of subtypes made. CONCLUSION: Among critically ill patients with sepsis, subtype strategies using clinical, biomarker, and transcriptomic data do not identify comparable patient populations and are likely to reflect disparate clinical characteristics and underlying biology.


Subject(s)
Critical Illness , Sepsis , Humans , Biomarkers , Gene Expression Profiling , Sepsis/genetics , Prospective Studies
7.
Kidney Int Rep ; 8(10): 2029-2042, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37849991

ABSTRACT

Introduction: Primary hyperoxaluria type 1 (PH1) has a highly heterogeneous disease course. Apart from the c.508G>A (p.Gly170Arg) AGXT variant, which imparts a relatively favorable outcome, little is known about determinants of kidney failure. Identifying these is crucial for disease management, especially in this era of new therapies. Methods: In this retrospective study of 932 patients with PH1 included in the OxalEurope registry, we analyzed genotype-phenotype correlations as well as the impact of nephrocalcinosis, urolithiasis, and urinary oxalate and glycolate excretion on the development of kidney failure, using survival and mixed model analyses. Results: The risk of developing kidney failure was the highest for 175 vitamin-B6 unresponsive ("null") homozygotes and lowest for 155 patients with c.508G>A and c.454T>A (p.Phe152Ile) variants, with a median age of onset of kidney failure of 7.8 and 31.8 years, respectively. Fifty patients with c.731T>C (p.Ile244Thr) homozygote variants had better kidney survival than null homozygotes (P = 0.003). Poor outcomes were found in patients with other potentially vitamin B6-responsive variants. Nephrocalcinosis increased the risk of kidney failure significantly (hazard ratio [HR] 3.17 [2.03-4.94], P < 0.001). Urinary oxalate and glycolate measurements were available in 620 and 579 twenty-four-hour urine collections from 117 and 87 patients, respectively. Urinary oxalate excretion, unlike glycolate, was higher in patients who subsequently developed kidney failure (P = 0.034). However, the 41% intraindividual variation of urinary oxalate resulted in wide confidence intervals. Conclusion: In conclusion, homozygosity for AGXT null variants and nephrocalcinosis were the strongest determinants for kidney failure in PH1.

8.
Br J Clin Pharmacol ; 89(12): 3629-3636, 2023 12.
Article in English | MEDLINE | ID: mdl-37548047

ABSTRACT

AIMS: Ischemia-reperfusion injury (IRI) during kidney transplant procedures is associated with adverse outcome. Alkaline phosphatase (AP) is an enzyme that has the potential to dampen IRI. Prior to this study, it had not been tested in the setting of kidney transplantation. This study aimed to evaluate the safety and feasibility of peri-procedural AP administration in living donor kidney transplantation. METHODS: In this double blind, randomized, placebo-controlled, single-center pilot study, all eligible recipients of living donor kidneys were asked to give informed consent. AP (bRESCAP) or a placebo was administered intravenously over 24 hours after the transplantation procedure. The primary outcome-graft function at 1 year-was represented by iohexol measured glomerular filtration rate (mGFR). Serum and urine biomarkers within seven days after surgery were used as surrogate markers of kidney function and injury. RESULTS: Eleven patients were enrolled of whom five were treated with bRESCAP and six with placebo. After 1 year, mGFR was not different between groups. No specific adverse events were observed in the bRESCAP group. Urine expression of injury biomarkers CCL14, NGAL and Cystatin C was lower in the bRESCAP group at day seven. This was statistically significant. CONCLUSION: This study illustrates that bRESCAP treatment is feasible in kidney transplantation, might have a dampening effect on IRI induced renal inflammation, and raises no safety concerns. Future research will evaluate the effects of bRESCAP treatment in donation after circulatory death kidney transplantation where IRI is more pronounced.


Subject(s)
Kidney Transplantation , Reperfusion Injury , Humans , Kidney Transplantation/adverse effects , Alkaline Phosphatase , Pilot Projects , Living Donors , Feasibility Studies , Kidney , Reperfusion Injury/etiology , Biomarkers
9.
Thromb Res ; 229: 187-197, 2023 09.
Article in English | MEDLINE | ID: mdl-37541167

ABSTRACT

BACKGROUND: Thrombocytopenia is associated with increased mortality in COVID-19 patients. OBJECTIVE: To determine the association between thrombocytopenia and alterations in host response pathways implicated in disease pathogenesis in patients with severe COVID-19. PATIENTS/METHODS: We studied COVID-19 patients admitted to a general hospital ward included in a national (CovidPredict) cohort derived from 13 hospitals in the Netherlands. In a subgroup, 43 host response biomarkers providing insight in aberrations in distinct pathophysiological domains (coagulation and endothelial cell function; inflammation and damage; cytokines and chemokines) were determined in plasma obtained at a single time point within 48 h after admission. Patients were stratified in those with normal platelet counts (150-400 × 109/L) and those with thrombocytopenia (<150 × 109/L). RESULTS: 6.864 patients were enrolled in the national cohort, of whom 1.348 had thrombocytopenia and 5.516 had normal platelets counts; the biomarker cohort consisted of 429 patients, of whom 85 with thrombocytopenia and 344 with normal platelet counts. Plasma D-dimer levels were not different in thrombocytopenia, although patients with moderate-severe thrombocytopenia (<100 × 109/L) showed higher D-dimer levels, indicating enhanced coagulation activation. Patients with thrombocytopenia had lower plasma levels of many proinflammatory cytokines and chemokines, and antiviral mediators, suggesting involvement of platelets in inflammation and antiviral immunity. Thrombocytopenia was associated with alterations in endothelial cell biomarkers indicative of enhanced activation and a relatively preserved glycocalyx integrity. CONCLUSION: Thrombocytopenia in hospitalized patients with severe COVID-19 is associated with broad host response changes across several pathophysiological domains. These results suggest a role of platelets in the immune response during severe COVID-19.


Subject(s)
Anemia , COVID-19 , Thrombocytopenia , Humans , COVID-19/complications , Anemia/complications , Biomarkers , Inflammation/complications , Cytokines
10.
Crit Care ; 27(1): 269, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37415223

ABSTRACT

BACKGROUND: Immune suppression has been implicated in the occurrence of pneumonia in critically ill patients. We tested the hypothesis that Intensive Care Unit (ICU)-acquired pneumonia is associated with broad host immune aberrations in the trajectory to pneumonia, encompassing inflammatory, endothelial and coagulation responses. We compared plasma protein biomarkers reflecting the systemic host response in critically ill patients who acquire a new pneumonia (cases) with those who do not (controls). METHODS: We performed a nested case-control study in patients undergoing mechanical ventilation at ICU admission with an expected stay of at least 48 h enrolled in 30 hospitals in 11 European countries. Nineteen host response biomarkers reflective of key pathophysiological domains were measured in plasma obtained on study inclusion and day 7, and-in cases-on the day of pneumonia diagnosis. RESULTS: Of 1997 patients, 316 developed pneumonia (15.8%) and 1681 did not (84.2%). Plasma protein biomarker analyses, performed in cases and a randomly selected subgroup of controls (1:2 ratio to cases, n = 632), demonstrated considerable variation across time points and patient groups. Yet, cases showed biomarker concentrations suggestive of enhanced inflammation and a more disturbed endothelial barrier function, both at study enrollment (median 2 days after ICU admission) and in the path to pneumonia diagnosis (median 5 days after ICU admission). Baseline host response biomarker aberrations were most profound in patients who developed pneumonia either shortly (< 5 days, n = 105) or late (> 10 days, n = 68) after ICU admission. CONCLUSIONS: Critically ill patients who develop an ICU-acquired pneumonia, compared with those who do not, display alterations in plasma protein biomarker concentrations indicative of stronger proinflammatory, procoagulant and (injurious) endothelial cell responses. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02413242, posted April 9th, 2015.


Subject(s)
Critical Illness , Pneumonia , Humans , Case-Control Studies , Intensive Care Units , Blood Proteins , Biomarkers
11.
Pediatr Nephrol ; 38(11): 3681-3692, 2023 11.
Article in English | MEDLINE | ID: mdl-37191940

ABSTRACT

BACKGROUND: The aetiology of idiopathic nephrotic syndrome (INS) remains partially unknown. Viral infections have been associated with INS onset. Since we observed fewer first onset INS cases during the Covid-19 pandemic, we hypothesised that lower INS incidence was the result of lockdown measures. Therefore, the aim of this study was to evaluate the incidence of childhood INS before and during the COVID-19 pandemic in two independent European INS cohorts. METHODS: Children with new INS in the Netherlands (2018-2021) and Paris area (2018-2021) were included. We estimated incidences using census data for each region. Incidences were compared using two proportion Z-tests. RESULTS: A total of 128 and 324 cases of first onset INS were reported in the Netherlands and Paris area, respectively, corresponding to an annual incidence of 1.21 and 2.58 per 100,000 children/year. Boys and young children (< 7 years) were more frequently affected. Incidence before and during the pandemic did not differ. When schools were closed, incidence was lower in both regions: 0.53 vs. 1.31 (p = 0.017) in the Netherlands and 0.94 vs. 2.63 (p = 0.049) in the Paris area. During peaks of hospital admissions for Covid-19, no cases were reported in the Netherlands or Paris area. CONCLUSIONS: Incidence of INS before and during the Covid-19 pandemic was not different, but when schools were closed during lockdown, incidence was significantly lower. Interestingly, incidences of other respiratory viral infections were also reduced as was air pollution. Together, these results argue for a link between INS onset and viral infections and/or environmental factors. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
COVID-19 , Nephrosis, Lipoid , Nephrotic Syndrome , Child , Male , Humans , Child, Preschool , Nephrotic Syndrome/epidemiology , Nephrotic Syndrome/complications , COVID-19/epidemiology , COVID-19/complications , Incidence , Paris/epidemiology , Netherlands/epidemiology , Communicable Disease Control , Nephrosis, Lipoid/complications , France
13.
Eur Respir J ; 62(1)2023 07.
Article in English | MEDLINE | ID: mdl-37080568

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown. The aim of this study was to obtain insight into the association between ageing, the host response and mortality in patients with COVID-19. METHODS: We determined 43 biomarkers reflective of alterations in four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, and cytokine and chemokine release. We used mediation analysis to associate ageing-driven alterations in the host response with 30-day mortality. Biomarkers associated with both ageing and mortality were validated in an intensive care unit and external cohort. RESULTS: 464 general ward patients with COVID-19 were stratified according to age decades. Increasing age was an independent risk factor for 30-day mortality. Ageing was associated with alterations in each of the host response domains, characterised by greater activation of the endothelium and coagulation system and stronger elevation of inflammation and organ damage markers, which was independent of an increase in age-related comorbidities. Soluble tumour necrosis factor receptor 1, soluble triggering receptor expressed on myeloid cells 1 and soluble thrombomodulin showed the strongest correlation with ageing and explained part of the ageing-driven increase in 30-day mortality (proportion mediated: 13.0%, 12.9% and 12.6%, respectively). CONCLUSIONS: Ageing is associated with a strong and broad modification of the host response to COVID-19, and specific immune changes likely contribute to increased mortality in older patients. These results may provide insight into potential age-specific immunomodulatory targets in COVID-19.


Subject(s)
COVID-19 , Humans , Aged , Biomarkers , Inflammation , Cytokines , Aging
16.
Pathog Dis ; 812023 01 17.
Article in English | MEDLINE | ID: mdl-36535641

ABSTRACT

Hypoxia-inducible factor (HIF)1α is a transcription factor involved in cellular metabolism and regulation of immune cell effector functions. Here, we studied the role of HIF1α in myeloid cells during pneumonia caused by the major causative pathogen, Streptococcus pneumoniae (Spneu). Mice deficient for HIF1α in myeloid cells (LysMcreHif1αfl/fl) were generated to study the in vitro responsiveness of bone marrow-derived macrophages (BMDMs) and alveolar macrophages (AMs) to the Gram-positive bacterial wall component lipoteichoic acid (LTA) and heat-killed Spneu, and the in vivo host response after infection with Spneu via the airways. Both BMDMs and AMs released more lactate upon stimulation with LTA or Spneu, indicative of enhanced glycolysis; HIF1α-deficiency in these cells was associated with diminished lactate release. In BMDMs, HIF1α-deficiency resulted in reduced secretion of tumor necrosis factor (TNF)α and interleukin (IL)-6 upon activation with Spneu but not LTA, while HIF1α-deficient AMs secreted less TNFα and IL-6 in response to LTA, and TNFα after Spneu stimulation. However, no difference was found in the host response of LysMcreHif1αfl/fl mice after Spneu infection as compared to controls. Similar in vivo findings were obtained in neutrophil (Mrp8creHif1αfl/fl) HIF1α-deficient mice. These data suggest that myeloid HIF1α is dispensable for the host defense during pneumococcal pneumonia.


Subject(s)
Pneumonia, Pneumococcal , Animals , Mice , Hypoxia , Macrophages, Alveolar , Mice, Inbred C57BL , Pneumonia, Pneumococcal/pathology , Streptococcus pneumoniae , Tumor Necrosis Factor-alpha
17.
Int J Mol Sci ; 25(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38203480

ABSTRACT

Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air-liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia.


Subject(s)
Klebsiella , Pneumonia , Humans , Flagellin/pharmacology , Meropenem/pharmacology , Epithelial Cells , Anti-Bacterial Agents/pharmacology
18.
Open Forum Infect Dis ; 9(12): ofac632, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36519114

ABSTRACT

Background: Large clinical trials on drugs for hospitalized coronavirus disease 2019 (COVID-19) patients have shown significant effects on mortality. There may be a discrepancy with the observed real-world effect. We describe the clinical characteristics and outcomes of hospitalized COVID-19 patients in the Netherlands during 4 pandemic waves and analyze the association of the newly introduced treatments with mortality, intensive care unit (ICU) admission, and discharge alive. Methods: We conducted a nationwide retrospective analysis of hospitalized COVID-19 patients between February 27, 2020, and December 31, 2021. Patients were categorized into waves and into treatment groups (hydroxychloroquine, remdesivir, neutralizing severe acute respiratory syndrome coronavirus 2 monoclonal antibodies, corticosteroids, and interleukin [IL]-6 antagonists). Four types of Cox regression analyses were used: unadjusted, adjusted, propensity matched, and propensity weighted. Results: Among 5643 patients from 11 hospitals, we observed a changing epidemiology during 4 pandemic waves, with a decrease in median age (67-64 years; P < .001), in in-hospital mortality on the ward (21%-15%; P < .001), and a trend in the ICU (24%-16%; P = .148). In ward patients, hydroxychloroquine was associated with increased mortality (1.54; 95% CI, 1.22-1.96), and remdesivir was associated with a higher rate of discharge alive within 29 days (1.16; 95% CI, 1.03-1.31). Corticosteroids were associated with a decrease in mortality (0.82; 95% CI, 0.69-0.96); the results of IL-6 antagonists were inconclusive. In patients directly admitted to the ICU, hydroxychloroquine, corticosteroids, and IL-6 antagonists were not associated with decreased mortality. Conclusions: Both remdesivir and corticosteroids were associated with better outcomes in ward patients with COVID-19. Continuous evaluation of real-world treatment effects is needed.

19.
Crit Care ; 26(1): 385, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36514130

ABSTRACT

BACKGROUND: The association of ageing with increased sepsis mortality is well established. Nonetheless, current investigations on the influence of age on host response aberrations are largely limited to plasma cytokine levels while neglecting other pathophysiological sepsis domains like endothelial cell activation and function, and coagulation activation. The primary objective of this study was to gain insight into the association of ageing with aberrations in key host response pathways and blood transcriptomes in sepsis. METHODS: We analysed the clinical outcome (n = 1952), 16 plasma biomarkers providing insight in deregulation of specific pathophysiological domains (n = 899), and blood leukocyte transcriptomes (n = 488) of sepsis patients stratified according to age decades. Blood transcriptome results were validated in an independent sepsis cohort and compared with healthy individuals. RESULTS: Older age was associated with increased mortality independent of comorbidities and disease severity. Ageing was associated with lower endothelial cell activation and dysfunction, and similar inflammation and coagulation activation, despite higher disease severity scores. Blood leukocytes of patients ≥ 70 years, compared to patients < 50 years, showed decreased expression of genes involved in cytokine signaling, and innate and adaptive immunity, and increased expression of genes involved in hemostasis and endothelial cell activation. The diminished expression of gene pathways related to innate immunity and cytokine signaling in subjects ≥ 70 years was sepsis-induced, as healthy subjects ≥ 70 years showed enhanced expression of these pathways compared to healthy individuals < 50 years. CONCLUSIONS: This study provides novel evidence that older age is associated with relatively mitigated sepsis-induced endothelial cell activation and dysfunction, and a blood leukocyte transcriptome signature indicating impaired innate immune and cytokine signaling. These data suggest that age should be considered in patient selection in future sepsis trials targeting the immune system and/or the endothelial cell response.


Subject(s)
Critical Illness , Sepsis , Humans , Sepsis/complications , Cytokines , Biomarkers , Endothelial Cells/metabolism
20.
Sci Transl Med ; 14(669): eabq4433, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36322631

ABSTRACT

Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing millions of global deaths each year. To alleviate this burden, improved prognostication and biomarkers of response are urgently needed. We investigated the use of whole-blood transcriptomics for stratification of patients with severe infection by integrating data from 3149 samples from patients with sepsis due to community-acquired pneumonia or fecal peritonitis admitted to intensive care and healthy individuals into a gene expression reference map. We used this map to derive a quantitative sepsis response signature (SRSq) score reflective of immune dysfunction and predictive of clinical outcomes, which can be estimated using a 7- or 12-gene signature. Last, we built a machine learning framework, SepstratifieR, to deploy SRSq in adult and pediatric bacterial and viral sepsis, H1N1 influenza, and COVID-19, demonstrating clinically relevant stratification across diseases and revealing some of the physiological alterations linking immune dysregulation to mortality. Our method enables early identification of individuals with dysfunctional immune profiles, bringing us closer to precision medicine in infection.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Sepsis , Adult , Humans , Child , Gene Expression Profiling , Sepsis/genetics , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...