Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cell Metab ; 36(4): 745-761.e5, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38569471

ABSTRACT

There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Metabolic Syndrome , Obesity, Metabolically Benign , Adult , Humans , Obesity/metabolism , Triglycerides , Metabolic Syndrome/metabolism , Body Mass Index , Risk Factors
3.
J Lipid Res ; 65(3): 100519, 2024 03.
Article in English | MEDLINE | ID: mdl-38354857

ABSTRACT

Metabolic syndrome affects more than one in three adults and is associated with increased risk of diabetes, cardiovascular disease, and all-cause mortality. Muscle insulin resistance is a major contributor to the development of the metabolic syndrome. Studies in mice have linked skeletal muscle sarcoplasmic reticulum (SR) phospholipid composition to sarcoplasmic/endoplasmic reticulum Ca2+-ATPase activity and insulin sensitivity. To determine if the presence of metabolic syndrome alters specific phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species in human SR, we compared SR phospholipid composition in skeletal muscle from sedentary subjects with metabolic syndrome and sedentary control subjects without metabolic syndrome. Both total PC and total PE were significantly decreased in skeletal muscle SR of sedentary metabolic syndrome patients compared with sedentary controls, particularly in female participants, but there was no difference in the PC:PE ratio between groups. Total SR PC levels, but not total SR PE levels or PC:PE ratio, were significantly negatively correlated with BMI, waist circumference, total fat, visceral adipose tissue, triglycerides, fasting insulin, and homeostatic model assessment for insulin resistance. These findings are consistent with the existence of a relationship between skeletal muscle SR PC content and insulin resistance in humans.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Adult , Humans , Female , Animals , Mice , Sarcoplasmic Reticulum/metabolism , Insulin Resistance/physiology , Metabolic Syndrome/metabolism , Muscle, Skeletal/metabolism , Phospholipids/metabolism , Phosphatidylcholines/metabolism
4.
Obesity (Silver Spring) ; 32(3): 540-546, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228469

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the relative importance of the basal rate of glucose appearance (Ra) in the circulation and the basal rate of plasma glucose clearance in determining fasting plasma glucose concentration in people with obesity and different fasting glycemic statuses. METHODS: The authors evaluated basal glucose kinetics in 33 lean people with normal fasting glucose (<100 mg/dL; Lean < 100 group) and 206 people with obesity and normal fasting glucose (Ob < 100 group, n = 118), impaired fasting glucose (100-125 mg/dL; Ob 100-125 group, n = 66), or fasting glucose diagnostic of diabetes (≥126 mg/dL; Ob ≥ 126 group, n = 22). RESULTS: Although there was a large (up to three-fold) range in glucose Ra within each group, the ranges in glucose concentration in the Lean < 100, Ob < 100, and Ob 100-125 groups were small because of a close relationship between glucose Ra and clearance rate. However, the glucose clearance rate at any Ra value was lower in the hyperglycemic than the normoglycemic groups. In the Ob ≥ 126 group, plasma glucose concentration was primarily determined by glucose Ra, because glucose clearance was markedly attenuated. CONCLUSIONS: Fasting hyperglycemia in people with obesity represents a disruption of the precisely regulated integration of glucose production and clearance rates.


Subject(s)
Blood Glucose , Hyperglycemia , Humans , Insulin , Obesity/complications , Glucose , Fasting
6.
Obesity (Silver Spring) ; 30(9): 1718-1721, 2022 09.
Article in English | MEDLINE | ID: mdl-35872608

ABSTRACT

Achieving successful long-term weight loss with lifestyle modification in people with obesity is difficult and underscores the need for effective pharmacotherapy. Since 1947, a total of 18 medications have been approved by the US Food and Drug Administration for treating obesity; however, only 5 remain available for long-term use in the US. Semaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist approved in 2021, demonstrated much greater weight loss than previous medications, which stimulated the development of poly-agonists that combine GLP-1 receptor agonism with glucose-dependent insulinotropic polypeptide (GIP) and glucagon receptor agonism. The potential of this approach was recently demonstrated by the extraordinary weight loss achieved by tirzepatide, a GLP-1/GIP receptor dual agonist. The therapeutic efficacy of poly-agonists is likely to change the treatment paradigm for obesity. However, the use of medications for obesity, as for other chronic diseases, will likely require lifelong treatment, which makes it important to analyze the long-term efficacy, safety, and economic implications of chronic pharmacotherapy.


Subject(s)
Diabetes Mellitus, Type 2 , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide-1 Receptor , Obesity , Receptors, Glucagon , Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Glucose , Humans , Obesity/drug therapy , Receptors, Gastrointestinal Hormone , Receptors, Glucagon/agonists , Weight Loss
7.
Physiol Rev ; 102(4): 1991-2034, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35834774

ABSTRACT

Time-restricted eating (TRE) is a dietary intervention that limits food consumption to a specific time window each day. The effect of TRE on body weight and physiological functions has been extensively studied in rodent models, which have shown considerable therapeutic effects of TRE and important interactions among time of eating, circadian biology, and metabolic homeostasis. In contrast, it is difficult to make firm conclusions regarding the effect of TRE in people because of the heterogeneity in results, TRE regimens, and study populations. In this review, we 1) provide a background of the history of meal consumption in people and the normal physiology of eating and fasting; 2) discuss the interaction between circadian molecular metabolism and TRE; 3) integrate the results of preclinical and clinical studies that evaluated the effects of TRE on body weight and physiological functions; 4) summarize other time-related dietary interventions that have been studied in people; and 4) identify current gaps in knowledge and provide a framework for future research directions.


Subject(s)
Circadian Rhythm , Fasting , Body Weight , Circadian Rhythm/physiology , Eating , Fasting/physiology , Humans
8.
J Endocr Soc ; 6(1): bvab182, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34913021

ABSTRACT

Autoantibodies to the insulin receptor are rare and typically cause severe insulin resistance and hyperglycemia, a condition termed type B insulin resistance. Uncommonly, antibodies to the insulin receptor can cause hypoglycemia. We present the case of a woman who developed recurrent severe hypoglycemia and myopathy, was found to have insulin receptor autoantibodies and mixed connective tissue disease, and had resolution of hypoglycemia with immunosuppression. A 55-year-old woman with a history of obesity, hypertension, and prior hemorrhagic stroke presented with recurrent severe hypoglycemia. A diagnostic fast resulted in hypoinsulinemic hypoketotic hypoglycemia. Adrenal function was intact. Progressive myopathy had developed simultaneously with her hypoglycemia, and rheumatologic evaluation revealed mixed connective tissue disease. The plasma acylcarnitine profile was normal, extensive oncologic evaluation including insulin-like growth factor 2 measurement was unrevealing, and anti-insulin antibody testing was negative. Ultimately, anti-insulin receptor antibodies were found to be present. The patient was treated with glucocorticoids and rituximab. Eight weeks after initiation of immunosuppression, the insulin receptor antibody titer had decreased and hypoglycemia had resolved. Eight months after diagnosis, the patient remained free of severe hypoglycemia despite tapering of glucocorticoids to a near-physiologic dose. Though antibodies to the insulin receptor typically cause severe insulin resistance, this patient had no evidence of insulin resistance and instead presented with recurrent severe hypoglycemia, which responded to glucocorticoids and rituximab. The diagnosis of insulin receptor antibody-mediated hypoglycemia is rare but should be considered in patients with systemic autoimmune disease, including mixed connective tissue disease, in the appropriate clinical context.

9.
J Cyst Fibros ; 21(2): 265-271, 2022 03.
Article in English | MEDLINE | ID: mdl-34862121

ABSTRACT

BACKGROUND: Though weight gain has been reported in some clinical trials of CFTR modulators, the effect of elexacaftor-tezacaftor-ivacaftor on body weight, body mass index (BMI), blood pressure, lipids and glycemic control in the real-world setting remains incompletely described. METHODS: We performed a single-center, retrospective, observational analysis of the effect of elexacaftor-tezacaftor-ivacaftor on body weight and cardiometabolic parameters in 134 adult CF patients of the Washington University Adult Cystic Fibrosis Center. Body weight, BMI, and blood pressure were extracted from outpatient clinic visits for the year preceding and the period following the initiation of elexacaftor-tezacaftor-ivacaftor. Other metabolic parameters were extracted at baseline and at latest available follow-up. RESULTS: A mean of 12.2 months of follow-up data was available for analysis. The mean rate of change in BMI was 1.47 kg/m2/yr (95% CI, 1.08 to 1.87) greater after initiation of elexacaftor-tezacaftor-ivacaftor. Significant increases in blood pressure were observed. In those without CFRD, random blood glucose and hemoglobin A1c were decreased after elexacaftor-tezacaftor-ivacaftor initiation. In those with CFRD, elexacaftor-tezacaftor-ivacaftor increased serum total cholesterol, HDL-cholesterol, and LDL-cholesterol. CONCLUSIONS: In this single-center, retrospective, observational study of 134 adults with CF, initiation of elexacaftor-tezacaftor-ivacaftor was associated with increases in BMI at a mean follow up of 12.2 months. Changes in other cardiometabolic risk factors were also observed. Widespread use of elexacaftor-tezacaftor-ivacaftor may be expected to increase the incidence of overnutrition in the CF population.


Subject(s)
Chloride Channel Agonists , Cystic Fibrosis , Adult , Aminophenols/adverse effects , Benzodioxoles/adverse effects , Body Weight/drug effects , Cardiometabolic Risk Factors , Chloride Channel Agonists/adverse effects , Cholesterol , Cystic Fibrosis/drug therapy , Humans , Indoles/adverse effects , Pyrazoles/adverse effects , Pyridines/adverse effects , Pyrrolidines/adverse effects , Quinolones/adverse effects , Retrospective Studies
10.
Proc Natl Acad Sci U S A ; 117(14): 8166-8176, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32188779

ABSTRACT

Multiple insulin-regulated enzymes participate in hepatic glycogen synthesis, and the rate-controlling step responsible for insulin stimulation of glycogen synthesis is unknown. We demonstrate that glucokinase (GCK)-mediated glucose phosphorylation is the rate-controlling step in insulin-stimulated hepatic glycogen synthesis in vivo, by use of the somatostatin pancreatic clamp technique using [13C6]glucose with metabolic control analysis (MCA) in three rat models: 1) regular chow (RC)-fed male rats (control), 2) high fat diet (HFD)-fed rats, and 3) RC-fed rats with portal vein glucose delivery at a glucose infusion rate matched to the control. During hyperinsulinemia, hyperglycemia dose-dependently increased hepatic glycogen synthesis. At similar levels of hyperinsulinemia and hyperglycemia, HFD-fed rats exhibited a decrease and portal delivery rats exhibited an increase in hepatic glycogen synthesis via the direct pathway compared with controls. However, the strong correlation between liver glucose-6-phosphate concentration and net hepatic glycogen synthetic rate was nearly identical in these three groups, suggesting that the main difference between models is the activation of GCK. MCA yielded a high control coefficient for GCK in all three groups. We confirmed these findings in studies of hepatic GCK knockdown using an antisense oligonucleotide. Reduced liver glycogen synthesis in lipid-induced hepatic insulin resistance and increased glycogen synthesis during portal glucose infusion were explained by concordant changes in translocation of GCK. Taken together, these data indicate that the rate of insulin-stimulated hepatic glycogen synthesis is controlled chiefly through GCK translocation.


Subject(s)
Fatty Liver/pathology , Glucokinase/metabolism , Glucose/metabolism , Liver Glycogen/biosynthesis , Liver/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Liver/etiology , Gene Knockdown Techniques , Glucokinase/genetics , Glucose/administration & dosage , Glucose-6-Phosphate/analysis , Glucose-6-Phosphate/metabolism , Humans , Hyperglycemia/etiology , Hyperglycemia/pathology , Hyperinsulinism/etiology , Hyperinsulinism/pathology , Insulin/metabolism , Insulin Resistance , Liver/pathology , Male , Metabolomics , Phosphorylation , Rats
11.
Cell Rep ; 29(11): 3394-3404.e9, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31825824

ABSTRACT

Pyruvate kinase is an important enzyme in glycolysis and a key metabolic control point. We recently observed a pyruvate kinase liver isoform (PKL) phosphorylation site at S113 that correlates with insulin resistance in rats on a 3 day high-fat diet (HFD) and suggests additional control points for PKL activity. However, in contrast to the classical model of PKL regulation, neither authentically phosphorylated PKL at S12 nor S113 alone is sufficient to alter enzyme kinetics or structure. Instead, we show that cyclin-dependent kinases (CDKs) are activated by the HFD and responsible for PKL phosphorylation at position S113 in addition to other targets. These CDKs control PKL nuclear retention, alter cytosolic PKL activity, and ultimately influence glucose production. These results change our view of PKL regulation and highlight a previously unrecognized pathway of hepatic CDK activity and metabolic control points that may be important in insulin resistance and type 2 diabetes.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclin-Dependent Kinases/metabolism , Gluconeogenesis , Hepatocytes/metabolism , Pyruvate Kinase/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Cells, Cultured , Diet, High-Fat , Glucose/metabolism , Insulin Resistance , Male , Phosphorylation , Pyruvate Kinase/chemistry , Rats , Rats, Sprague-Dawley
13.
Proc Natl Acad Sci U S A ; 115(38): E8996-E9005, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30181290

ABSTRACT

Insulin resistance drives the development of type 2 diabetes (T2D). In liver, diacylglycerol (DAG) is a key mediator of lipid-induced insulin resistance. DAG activates protein kinase C ε (PKCε), which phosphorylates and inhibits the insulin receptor. In rats, a 3-day high-fat diet produces hepatic insulin resistance through this mechanism, and knockdown of hepatic PKCε protects against high-fat diet-induced hepatic insulin resistance. Here, we employed a systems-level approach to uncover additional signaling pathways involved in high-fat diet-induced hepatic insulin resistance. We used quantitative phosphoproteomics to map global in vivo changes in hepatic protein phosphorylation in chow-fed, high-fat-fed, and high-fat-fed with PKCε knockdown rats to distinguish the impact of lipid- and PKCε-induced protein phosphorylation. This was followed by a functional siRNA-based screen to determine which dynamically regulated phosphoproteins may be involved in canonical insulin signaling. Direct PKCε substrates were identified by motif analysis of phosphoproteomics data and validated using a large-scale in vitro kinase assay. These substrates included the p70S6K substrates RPS6 and IRS1, which suggested cross talk between PKCε and p70S6K in high-fat diet-induced hepatic insulin resistance. These results identify an expanded set of proteins through which PKCε may drive high-fat diet-induced hepatic insulin resistance that may direct new therapeutic approaches for T2D.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/physiology , Insulin/metabolism , Protein Kinase C-epsilon/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Animals , Animals, Genetically Modified , Diabetes Mellitus, Type 2/etiology , Diet, High-Fat/adverse effects , Disease Models, Animal , Gene Knockdown Techniques , Humans , Insulin Receptor Substrate Proteins/metabolism , Lipid Metabolism/physiology , Liver/metabolism , Phosphorylation , Protein Kinase C-epsilon/genetics , Proteomics/methods , RNA, Small Interfering/metabolism , Rats , Receptor, Insulin/metabolism , Ribosomal Protein S6/metabolism , Signal Transduction/physiology
14.
Physiol Rev ; 98(4): 2133-2223, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30067154

ABSTRACT

The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ?selective hepatic insulin resistanceË® is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.


Subject(s)
Insulin Resistance/physiology , Insulin/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Liver/metabolism , Liver/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology
15.
J Biol Chem ; 293(27): 10466-10486, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29773651

ABSTRACT

Insulin stimulates the exocytic translocation of specialized vesicles in adipocytes, which inserts GLUT4 glucose transporters into the plasma membrane to enhance glucose uptake. Previous results support a model in which TUG (Tether containing a UBX domain for GLUT4) proteins trap these GLUT4 storage vesicles at the Golgi matrix and in which insulin triggers endoproteolytic cleavage of TUG to translocate GLUT4. Here, we identify the muscle splice form of Usp25 (Usp25m) as a protease required for insulin-stimulated TUG cleavage and GLUT4 translocation in adipocytes. Usp25m is expressed in adipocytes, binds TUG and GLUT4, dissociates from TUG-bound vesicles after insulin addition, and colocalizes with TUG and insulin-responsive cargoes in unstimulated cells. Previous results show that TUG proteolysis generates the ubiquitin-like protein, TUGUL (for TUGubiquitin-like). We now show that TUGUL modifies the kinesin motor protein, KIF5B, and that TUG proteolysis is required to load GLUT4 onto these motors. Insulin stimulates TUG proteolytic processing independently of phosphatidylinositol 3-kinase. In nonadipocytes, TUG cleavage can be reconstituted by transfection of Usp25m, but not the related Usp25a isoform, together with other proteins present on GLUT4 vesicles. In rodents with diet-induced insulin resistance, TUG proteolysis and Usp25m protein abundance are reduced in adipose tissue. These effects occur soon after dietary manipulation, prior to the attenuation of insulin signaling to Akt. Together with previous data, these results support a model whereby insulin acts through Usp25m to mediate TUG cleavage, which liberates GLUT4 storage vesicles from the Golgi matrix and activates their microtubule-based movement to the plasma membrane. This TUG proteolytic pathway for insulin action is independent of Akt and is impaired by nutritional excess.


Subject(s)
Adipocytes/metabolism , Carrier Proteins/metabolism , Glucose Transporter Type 4/metabolism , Insulin/pharmacology , Kinesins/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Animals , Carrier Proteins/genetics , Cell Membrane/metabolism , Cells, Cultured , Glucose/metabolism , Glucose Transporter Type 4/genetics , Hypoglycemic Agents/pharmacology , Intracellular Signaling Peptides and Proteins , Kinesins/genetics , Male , Mice , Mice, Inbred C57BL , Motor Activity , Protein Transport , Proteolysis , Rats , Rats, Sprague-Dawley , Signal Transduction , Ubiquitin Thiolesterase/genetics
16.
Nat Rev Endocrinol ; 13(10): 572-587, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28731034

ABSTRACT

The liver is crucial for the maintenance of normal glucose homeostasis - it produces glucose during fasting and stores glucose postprandially. However, these hepatic processes are dysregulated in type 1 and type 2 diabetes mellitus, and this imbalance contributes to hyperglycaemia in the fasted and postprandial states. Net hepatic glucose production is the summation of glucose fluxes from gluconeogenesis, glycogenolysis, glycogen synthesis, glycolysis and other pathways. In this Review, we discuss the in vivo regulation of these hepatic glucose fluxes. In particular, we highlight the importance of indirect (extrahepatic) control of hepatic gluconeogenesis and direct (hepatic) control of hepatic glycogen metabolism. We also propose a mechanism for the progression of subclinical hepatic insulin resistance to overt fasting hyperglycaemia in type 2 diabetes mellitus. Insights into the control of hepatic gluconeogenesis by metformin and insulin and into the role of lipid-induced hepatic insulin resistance in modifying gluconeogenic and net hepatic glycogen synthetic flux are also discussed. Finally, we consider the therapeutic potential of strategies that target hepatosteatosis, hyperglucagonaemia and adipose lipolysis.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Fatty Liver/metabolism , Gluconeogenesis/physiology , Insulin Resistance , Liver Glycogen/metabolism , Liver/metabolism , Case-Control Studies , Diabetes Mellitus, Type 2/physiopathology , Fatty Liver/physiopathology , Female , Glucose/metabolism , Humans , Male , Reference Values
17.
Trends Pharmacol Sci ; 38(7): 649-665, 2017 07.
Article in English | MEDLINE | ID: mdl-28551355

ABSTRACT

Although ample evidence links hepatic lipid accumulation with hepatic insulin resistance, the mechanistic basis of this association is incompletely understood and controversial. Diacylglycerols (DAGs) and ceramides have emerged as the two best-studied putative mediators of lipid-induced hepatic insulin resistance. Both lipids were first associated with insulin resistance in skeletal muscle and were subsequently hypothesized to mediate insulin resistance in the liver. However, the putative roles for DAGs and ceramides in hepatic insulin resistance have proved more complex than originally imagined, with various genetic and pharmacologic manipulations yielding a vast and occasionally contradictory trove of data to sort. In this review we examine the state of this field, turning a critical eye toward both DAGs and ceramides as putative mediators of lipid-induced hepatic insulin resistance.


Subject(s)
Ceramides/metabolism , Diglycerides/metabolism , Insulin Resistance , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Humans
18.
J Clin Invest ; 126(11): 4361-4371, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27760050

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D), but whether NAFLD plays a causal role in the pathogenesis of T2D is uncertain. One proposed mechanism linking NAFLD to hepatic insulin resistance involves diacylglycerol-mediated (DAG-mediated) activation of protein kinase C-ε (PKCε) and the consequent inhibition of insulin receptor (INSR) kinase activity. However, the molecular mechanism underlying PKCε inhibition of INSR kinase activity is unknown. Here, we used mass spectrometry to identify the phosphorylation site Thr1160 as a PKCε substrate in the functionally critical INSR kinase activation loop. We hypothesized that Thr1160 phosphorylation impairs INSR kinase activity by destabilizing the active configuration of the INSR kinase, and our results confirmed this prediction by demonstrating severely impaired INSR kinase activity in phosphomimetic T1160E mutants. Conversely, the INSR T1160A mutant was not inhibited by PKCε in vitro. Furthermore, mice with a threonine-to-alanine mutation at the homologous residue Thr1150 (InsrT1150A mice) were protected from high fat diet-induced hepatic insulin resistance. InsrT1150A mice also displayed increased insulin signaling, suppression of hepatic glucose production, and increased hepatic glycogen synthesis compared with WT controls during hyperinsulinemic clamp studies. These data reveal a critical pathophysiological role for INSR Thr1160 phosphorylation and provide further mechanistic links between PKCε and INSR in mediating NAFLD-induced hepatic insulin resistance.


Subject(s)
Dietary Fats/adverse effects , Insulin Resistance , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Receptor, Insulin/metabolism , Signal Transduction/drug effects , Amino Acid Substitution , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Dietary Fats/pharmacology , Glycogen/biosynthesis , Glycogen/genetics , Liver/pathology , Mice , Mice, Mutant Strains , Mutation, Missense , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/genetics , Phosphorylation , Protein Kinase C-epsilon/genetics , Protein Kinase C-epsilon/metabolism , Receptor, Insulin/genetics
19.
Nat Commun ; 7: 12639, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27577745

ABSTRACT

Insulin resistance is a key driver of type 2 diabetes (T2D) and is characterized by defective insulin receptor (INSR) signalling. Although surface INSR downregulation is a well-established contributor to insulin resistance, the underlying molecular mechanisms remain obscure. Here we show that the E3 ubiquitin ligase MARCH1 impairs cellular insulin action by degrading cell surface INSR. Using a large-scale RNA interference screen, we identify MARCH1 as a negative regulator of INSR signalling. March1 loss-of-function enhances, and March1 overexpression impairs, hepatic insulin sensitivity in mice. MARCH1 ubiquitinates INSR to decrease cell surface INSR levels, but unlike other INSR ubiquitin ligases, MARCH1 acts in the basal state rather than after insulin stimulation. Thus, MARCH1 may help set the basal gain of insulin signalling. MARCH1 expression is increased in white adipose tissue of obese humans, suggesting that MARCH1 contributes to the pathophysiology of T2D and could be a new therapeutic target.


Subject(s)
Antigens, CD/metabolism , Diabetes Mellitus, Type 2/pathology , Insulin Resistance/physiology , Insulin/metabolism , Obesity/pathology , Receptor, Insulin/metabolism , Ubiquitin-Protein Ligases/metabolism , Adipose Tissue, White/pathology , Adolescent , Animals , Antigens, CD/genetics , Biopsy , Cell Line , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/therapy , Diet, High-Fat/adverse effects , Disease Models, Animal , Down-Regulation , Female , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Site-Directed , Obesity/blood , Obesity/etiology , Obesity/therapy , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Phosphorylation , RNA, Small Interfering/metabolism , Receptor, Insulin/genetics , Signal Transduction/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Up-Regulation
20.
Am J Physiol Endocrinol Metab ; 311(2): E461-70, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27406738

ABSTRACT

Imeglimin is a promising new oral antihyperglycemic agent that has been studied in clinical trials as a possible monotherapy or add-on therapy to lower fasting plasma glucose and improve hemoglobin A1c (1-3, 9). Imeglimin was shown to improve both fasting and postprandial glycemia and to increase insulin secretion in response to glucose during a hyperglycemic clamp after 1-wk of treatment in type 2 diabetic patients. However, whether the ß-cell stimulatory effect of imeglimin is solely or partially responsible for its effects on glycemia remains to be fully confirmed. Here, we show that imeglimin directly activates ß-cell insulin secretion in awake rodents without affecting hepatic insulin sensitivity, body composition, or energy expenditure. These data identify a primary amplification rather than trigger the ß-cell mechanism that explains the acute, antidiabetic activity of imeglimin.


Subject(s)
Blood Glucose/drug effects , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Insulin/metabolism , Triazines/pharmacology , Animals , Blood Glucose/metabolism , Diet, High-Fat , Fasting , Glucose/metabolism , Glucose Clamp Technique , Insulin Resistance , Insulin Secretion , Insulin-Secreting Cells/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Postprandial Period , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...