Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Biomolecules ; 13(12)2023 12 12.
Article in English | MEDLINE | ID: mdl-38136650

ABSTRACT

DAF-FM DA is widely used as a live staining compound to show the presence of nitric oxide (NO) in cells. Applying this stain to live zebrafish embryos is known to indicate early centers of bone formation, but the precise (cellular) location of the signal has hitherto not been revealed. Using sections of zebrafish embryos live-stained with DAF-FM DA, we could confirm that the fluorescent signals were predominantly located in areas of ongoing bone formation. Signals were observed in the bone and tooth matrix, in the notochord sheath, as well as in the bulbus arteriosus. Surprisingly, however, they were exclusively extracellular, even after very short staining times. Von Kossa and Alizarin red S staining to reveal mineral deposits showed that DAF-FM DA stains both the mineralized and non-mineralized bone matrix (osteoid), excluding that DAF-FM DA binds non-specifically to calcified structures. The importance of NO in bone formation by osteoblasts is nevertheless undisputed, as shown by the absence of bone structures after the inhibition of NOS enzymes that catalyze the formation of NO. In conclusion, in zebrafish skeletal biology, DAF-FM DA is appropriate to reveal bone formation in vivo, independent of mineralization of the bone matrix, but it does not demonstrate intracellular NO.


Subject(s)
Osteogenesis , Zebrafish , Animals , Zebrafish/metabolism , Nitric Oxide/metabolism , Bone and Bones/metabolism , Coloring Agents/metabolism , Staining and Labeling
2.
Free Radic Biol Med ; 164: 399-409, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33476796

ABSTRACT

Superoxide dismutase 3 (SOD3) is an extracellular protein with the capacity to convert superoxide into hydrogen peroxide, an important secondary messenger in redox regulation. To investigate the utility of zebrafish in functional studies of SOD3 and its relevance for redox regulation, we have characterized the zebrafish orthologues; Sod3a and Sod3b. Our analyses show that both recombinant Sod3a and Sod3b express SOD activity, however, only Sod3b is able to bind heparin. Furthermore, RT-PCR analyses reveal that sod3a and sod3b are expressed in zebrafish embryos and are present primarily in separate organs in adult zebrafish, suggesting distinct functions in vivo. Surprisingly, both RT-PCR and whole mount in situ hybridization showed specific expression of sod3b in skeletal tissue. To further investigate this observation, we compared femoral bone obtained from wild-type and SOD3-/- mice to determine whether a functional difference was apparent in healthy adult mice. Here we report, that bone from SOD3-/- mice is less mineralized and characterized by significant reduction of cortical and trabecular thickness in addition to reduced mechanical strength. These analyses show that SOD3 plays a hitherto unappreciated role in bone development and homeostasis.


Subject(s)
Superoxide Dismutase , Zebrafish , Animals , Bone and Bones/metabolism , Homeostasis , Mice , Mice, Knockout , Oxidation-Reduction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Zebrafish/genetics , Zebrafish/metabolism
3.
Nutrients ; 12(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081105

ABSTRACT

The effect of food components on brain growth and development has attracted increasing attention. Milk has been shown to contain peptides that deliver important signals to the brains of neonates and infants. In order to reach the brain, milk peptides have to resist proteolytic degradation in the gastrointestinal tract, cross the gastrointestinal barrier and later cross the highly selective blood-brain barrier (BBB). To investigate this, we purified and characterized endogenous peptides from bovine milk and investigated their apical to basal transport by using human intestinal Caco-2 cells and primary porcine brain endothelial cell monolayer models. Among 192 characterized milk peptides, only the αS1-casein peptide 185PIGSENSEKTTMPLW199, and especially fragments of this peptide processed during the transport, could cross both the intestinal barrier and the BBB cell monolayer models. This peptide was also shown to resist simulated gastrointestinal digestion. This study demonstrates that a milk derived peptide can cross the major biological barriers in vitro and potentially reach the brain, where it may deliver physiological signals.


Subject(s)
Blood-Brain Barrier/metabolism , Caseins/metabolism , Intestinal Mucosa/metabolism , Milk/chemistry , Peptides/metabolism , Animals , Biological Transport , Brain/cytology , Caco-2 Cells , Cattle , Endothelial Cells/metabolism , Humans , Swine
4.
J Cell Biochem ; 121(12): 4809-4818, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32115754

ABSTRACT

Osteopontin (OPN) is a ubiquitously expressed, multifunctional, and highly phosphorylated protein. OPN contains two neighboring integrin-binding motifs, RGD and SVVYGLR, which mediate interaction with cells. Phosphorylation and proteolytic processing affect the integrin-binding activities of OPN. Here we report that the kinase, FAM20C, phosphorylates Ser146 in the 143 RGDSVVYGLR152 motif of OPN and that Ser146 is phosphorylated in vivo in human and bovine milk. Ser146 is located right next to the RGD motif and close by the regulatory thrombin and plasmin cleavage sites in the OPN sequence. Phosphorylation of Ser146 could potentially affect the proteolytic processing and the integrin-binding activities of OPN. We show that phosphorylation of Ser146 does not affect the susceptibility of OPN for thrombin or plasmin cleavage. However, phosphorylation of Ser146 significantly reduces the RGD-mediated interaction with the αv ß3 integrin in MDA-MB-435 and Moαv cells. This suggests a new mechanism by which specific phosphorylation of OPN can regulate interaction with the αv ß3 integrin and thereby affect OPN-cell interaction.

5.
Front Immunol ; 10: 2007, 2019.
Article in English | MEDLINE | ID: mdl-31507604

ABSTRACT

Properdin (FP) is a positive regulator of the immune system stimulating the activity of the proteolytically active C3 convertase C3bBb in the alternative pathway of the complement system. Here we present two crystal structures of FP and two structures of convertase bound FP. A structural core formed by three thrombospondin repeats (TSRs) and a TB domain harbors the convertase binding site in FP that mainly interacts with C3b. Stabilization of the interaction between the C3b C-terminus and the MIDAS bound Mg2+ in the Bb protease by FP TSR5 is proposed to underlie FP convertase stabilization. Intermolecular contacts between FP and the convertase subunits suggested by the structure were confirmed by binding experiments. FP is shown to inhibit C3b degradation by FI due to a direct competition for a common binding site on C3b. FP oligomers are held together by two sets of intermolecular contacts, where the first is formed by the TB domain from one FP molecule and TSR4 from another. The second and largest interface is formed by TSR1 and TSR6 from the same two FP molecules. Flexibility at four hinges between thrombospondin repeats is suggested to enable the oligomeric, polydisperse, and extended architecture of FP. Our structures rationalize the effects of mutations associated with FP deficiencies and provide a structural basis for the analysis of FP function in convertases and its possible role in pattern recognition.


Subject(s)
Complement C3-C5 Convertases/chemistry , Complement System Proteins/chemistry , Properdin/chemistry , Protein Multimerization , Binding Sites , Complement C3-C5 Convertases/metabolism , HEK293 Cells , Humans , Models, Molecular , Mutation , Properdin/metabolism , Protein Binding , Protein Conformation , Protein Processing, Post-Translational , Proteolysis , Structure-Activity Relationship
6.
Food Chem ; 301: 125298, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31387044

ABSTRACT

A synthetic scenario for functionalization of ß-lactoglobulin (ßLg) with polymeric units containing caffeic acid (ßLg-polyCA) was developed; and all intermediates and final products were structurally confirmed using nuclear magnetic resonance spectroscopy, matrix assisted laser desorption ionization time-of-flight mass spectrometry, and physico-chemically characterized using differential scanning calorimetry and circular dichroism. The antioxidant properties and emulsion stability of ßLg, ßLg-CA conjugate and ßLg-polyCA based systems containing high percentage of fish oil (50%) were evaluated; and ßLg-polyCA presented the highest antioxidant and free radical-scavenging activity based on DPPH, ABTS and HS scavenging assays (92.4, 87.92 and 67.35% respectively). Thiobarbituric acid (TBARS) test demonstrated that compared to native ßLg, ßLg-polyCA afford up 4-5 fold of inhibition of oxidative rancidity and displayed drastic secondary structure changes. Compared to native ßLg based emulsions, ßLg-polyCA had larger oil droplet sizes, stronger negative zeta potentials (-69.9 mv), narrower size distributions (PDI: 0.22) and less creaming index.


Subject(s)
Antioxidants/pharmacology , Emulsions/chemistry , Fish Oils/chemistry , Lactoglobulins/chemistry , Phenols/chemistry , Antioxidants/chemistry , Caffeic Acids/chemistry , Calorimetry, Differential Scanning , Circular Dichroism , Dynamic Light Scattering , Lipid Peroxidation , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Polymerization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.
Redox Biol ; 26: 101268, 2019 09.
Article in English | MEDLINE | ID: mdl-31326693

ABSTRACT

Superoxide dismutase 3 (SOD3) is an extracellular enzyme with the capacity to modulate extracellular redox conditions by catalyzing the dismutation of superoxide to hydrogen peroxide. In addition to synthesis and release of this extracellular protein via the secretory pathway, several studies have shown that the protein also localizes to intracellular compartments in neutrophils and macrophages. Here we show that human macrophages release SOD3 from an intracellular compartment within 30 min following LPS stimulation. This release acutely increases the level of SOD3 on the cell surface as well as in the extracellular environment. Generation of the intracellular compartment in macrophages is supported by endocytosis of extracellular SOD3 via the LDL receptor-related protein 1 (LRP1). Using bone marrow-derived macrophages established from wild-type and SOD3-/- mice, we further show that the pro-inflammatory profile established in LPS-stimulated cells is altered in the absence of SOD3, suggesting that the active release of this protein affects the inflammatory response. The internalization and acute release from stimulated macrophages indicates that SOD3 not only functions as a passive antioxidant in the extracellular environment, but also plays an active role in modulating redox signaling to support biological responses.


Subject(s)
Inflammation/etiology , Inflammation/metabolism , Macrophages/metabolism , Oxidation-Reduction , Superoxide Dismutase/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Endocytosis , Humans , Inflammation/pathology , Intracellular Space , Lipopolysaccharides/immunology , Macrophages/immunology , Mice , Mice, Knockout
8.
J Appl Physiol (1985) ; 127(3): 858-866, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31246554

ABSTRACT

Redox enzymes modulate intracellular redox balance and are secreted in response to cellular oxidative stress, potentially modulating systemic inflammation. Both aerobic and resistance exercise are known to cause acute systemic oxidative stress and inflammation; however, how redox enzyme concentrations alter in extracellular fluids following bouts of either type of exercise is unknown. Recreationally active men (n = 26, mean ± SD: age 28 ± 8 yr) took part in either: 1) two separate energy-matched cycling bouts: one of moderate intensity (MOD) and a bout of high intensity interval exercise (HIIE) or 2) an eccentric-based resistance exercise protocol (RES). Alterations in plasma (study 1) and serum (study 2) peroxiredoxin (PRDX)-2, PRDX-4, superoxide dismutase-3 (SOD3), thioredoxin (TRX-1), TRX-reductase and interleukin (IL)-6 were assessed before and at various timepoints after exercise. There was a significant increase in SOD3 (+1.5 ng/mL) and PRDX-4 (+5.9 ng/mL) concentration following HIIE only, peaking at 30- and 60-min post-exercise respectively. TRX-R decreased immediately and 60 min following HIIE (-7.3 ng/mL) and MOD (-8.6 ng/mL), respectively. In non-resistance trained men, no significant changes in redox enzyme concentrations were observed up to 48 h following RES, despite significant muscle damage. IL-6 concentration increased in response to all trials, however there was no significant relationship between absolute or exercise-induced changes in redox enzyme concentrations. These results collectively suggest that HIIE, but not MOD or RES increase the extracellular concentration of PRDX-4 and SOD3. Exercise-induced changes in redox enzyme concentrations do not appear to directly relate to systemic changes in IL-6 concentration.NEW & NOTEWORTHY Two studies were conducted to characterize changes in redox enzyme concentrations after single bouts of exercise to investigate the emerging association between extracellular redox enzymes and inflammation. We provide evidence that SOD3 and PRDX-4 concentration increased following high-intensity aerobic but not eccentric-based resistance exercise. Changes were not associated with IL-6. The results provide a platform to investigate the utility of SOD3 and PRDX-4 as biomarkers of oxidative stress following exercise.


Subject(s)
Exercise/physiology , Oxidoreductases/blood , Adult , Biomarkers/blood , Humans , Interleukin-6/blood , Young Adult
9.
J Biol Chem ; 294(22): 8745-8759, 2019 05 31.
Article in English | MEDLINE | ID: mdl-30975904

ABSTRACT

Venomous marine cone snails produce peptide toxins (conotoxins) that bind ion channels and receptors with high specificity and therefore are important pharmacological tools. Conotoxins contain conserved cysteine residues that form disulfide bonds that stabilize their structures. To gain structural insight into the large, yet poorly characterized conotoxin H-superfamily, we used NMR and CD spectroscopy along with MS-based analyses to investigate H-Vc7.2 from Conus victoriae, a peptide with a VI/VII cysteine framework. This framework has CysI-CysIV/CysII-CysV/CysIII-CysVI connectivities, which have invariably been associated with the inhibitor cystine knot (ICK) fold. However, the solution structure of recombinantly expressed and purified H-Vc7.2 revealed that although it displays the expected cysteine connectivities, H-Vc7.2 adopts a different fold consisting of two stacked ß-hairpins with opposing ß-strands connected by two parallel disulfide bonds, a structure homologous to the N-terminal region of the human granulin protein. Using structural comparisons, we subsequently identified several toxins and nontoxin proteins with this "mini-granulin" fold. These findings raise fundamental questions concerning sequence-structure relationships within peptides and proteins and the key determinants that specify a given fold.


Subject(s)
Conotoxins/chemistry , Conus Snail/metabolism , Cysteine/chemistry , Granulins/chemistry , Amino Acid Sequence , Animals , Conotoxins/genetics , Conotoxins/metabolism , Disulfides/chemistry , Granulins/metabolism , Magnetic Resonance Spectroscopy , Mollusk Venoms/metabolism , Protein Conformation, beta-Strand , Protein Folding , Protein Stability , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
10.
Sci Rep ; 8(1): 12293, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30115948

ABSTRACT

Bioconjugates established between anionic polyethylene glycol (PEG) based polymers and cationic proteins have proven to be a promising strategy to engineer thermostable biocatalysts. However, the enzyme activity of these bioconjugates is very low and the mechanism of non-covalent PEG-stabilization is yet to be understood. This work presents experimental and molecular dynamics simulation studies, using lipase-polymer surfactant nanoconjugates from mesophile Rhizomucor miehei (RML), performed to evaluate the effect of PEG on enzyme stability and activity. Results demonstrated that the number of hydrogen bonds between the cationized RML and PEG chain correlates with enzyme thermostability. In addition, an increase of both the number of PEG-polymers units and cationization degree of the enzyme leads to a decrease of enzyme activity. Modelling with SAXS data of aqueous solutions of the biofluid lipases agrees with previous hypothesis that these enzymes contain a core constituted of folded protein confined by a shell of surfactants. Together results provide valuable insight into the mechanism of non-covalent PEG mediated protein stabilization relevant for engineering active and thermostable biofluids. Furthermore, the first biofluids RML with activity comparable to their cationized counterpart are presented.


Subject(s)
Lipase/chemistry , Polyethylene Glycols/chemistry , Catalysis , Circular Dichroism , Hydrogen Bonding , Molecular Dynamics Simulation , Molecular Structure , Rhizomucor/enzymology , Scattering, Small Angle , Spectrophotometry, Ultraviolet , Surface-Active Agents/chemistry , X-Ray Diffraction
11.
Am J Physiol Regul Integr Comp Physiol ; 314(1): R84-R93, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28877869

ABSTRACT

The ability of many reptilian hemoglobins (Hbs) to form high-molecular weight polymers, albeit known for decades, has not been investigated in detail. Given that turtle Hbs often contain a high number of cysteine (Cys), potentially contributing to the red blood cell defense against reactive oxygen species, we have examined whether polymerization of Hb could occur via intermolecular disulfide bonds in red blood cells of freshwater turtle Trachemys scripta, a species that is highly tolerant of hypoxia and oxidative stress. We find that one of the two Hb isoforms of the hemolysate HbA is prone to polymerization in vitro into linear flexible chains of different size that are visible by electron microscopy but not the HbD isoform. Polymerization of purified HbA is favored by hydrogen peroxide, a main cellular reactive oxygen species and a thiol oxidant, and inhibited by thiol reduction and alkylation, indicating that HbA polymerization is due to disulfide bonds. By using mass spectrometry, we identify Cys5 of the αA-subunit of HbA as specifically responsible for forming disulfide bonds between adjacent HbA tetramers. Polymerization of HbA does not affect oxygen affinity, cooperativity, and sensitivity to the allosteric cofactor ATP, indicating that HbA is still fully functional. Polymers also form in T. scripta blood after exposure to anoxia but not normoxia, indicating that they are of physiological relevance. Taken together, these results show that HbA polymers may form during oxidative stress and that Cys5αA of HbA is a key element of the antioxidant capacity of turtle red blood cells.


Subject(s)
Amphibian Proteins/blood , Antioxidants/metabolism , Disulfides/blood , Hemoglobin A/metabolism , Hypoxia/blood , Oxidative Stress , Oxygen/blood , Turtles/blood , Adaptation, Physiological , Animals , Biomarkers/blood , Cysteine , Hypoxia/physiopathology , Polymerization
12.
Food Chem ; 241: 281-289, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28958530

ABSTRACT

Multi-functional phenolic emulsifiers were prepared by covalently coupling ß-Lactoglobulin (ßLg) to caffeic acid (CA) using crosslinker chemistry at different pH conditions (pH 2.5, 6.0, and 8.5). The resulting bioconjugates were characterized by MALDI-TOF MS, differential scanning calorimetry (DSC), fluorescence-quenching, infrared and circular dichroism spectroscopies. Furthermore, the emulsifying and antioxidant properties of ßLg-CA conjugates were evaluated and compared to native ß-Lactoglobulin and the non-covalent ß-lactoglobulin/caffeic complex (ßLg/CA). Results showed: 1) An optimal molar ratio (8:1) of caffeic acid to ßLg was obtained at pH 6; 2) DPPH activity of ßLg-CA increases as the number of CA units coupled increases; 3) ßLg-CA conjugates displayed comparable or superior water solubility than native ßLg and ßLg/CA. Moreover, DSC results showed that coupling of CA with ßLg significantly increased the thermal stability of ßLg. In summary, ßLg-CA conjugates can act as effective antioxidant emulsifiers and stabilizers and may find application in food and cosmetic industries.


Subject(s)
Milk Proteins/analysis , Animals , Chemical Phenomena , Hydrogen-Ion Concentration , Lactoglobulins , Milk , Phenols
13.
Adv Exp Med Biol ; 967: 57-70, 2017.
Article in English | MEDLINE | ID: mdl-29047081

ABSTRACT

When evaluating the role of redox-regulating signaling in pulmonary vascular diseases, it is intriguing to consider the modulation of key antioxidant enzymes like superoxide dismutase (SOD) because SOD isoforms are regulated by redox reactions, and, in turn, modulate downstream redox sensitive processes. The emerging field of redox biology is built upon understanding the regulation and consequences of tightly controlled and specific reduction-oxidation reactions that are critical for diverse cellular processes including cell signaling. Of relevance, both the site of production of specific reactive oxygen and nitrogen species and the site of the antioxidant defenses are highly compartmentalized within the cell. For example, superoxide is generated during oxidative phosphorylation in the mitochondria as well as by a number of enzymatic sources within the cytosol and at the cell membrane. In the pulmonary circulation, these sources include the mitochondrial electron transport chain, NADPH oxidases (NOX1-4, Duox1,2), nitric oxide synthases, and xanthine oxidase; this important topic has been thoroughly reviewed recently [1]. In parallel with these different cellular sites of superoxide production, the three SOD isoforms are also specifically localized to the cytosol (SOD1), mitochondria (SOD2) or extracellular compartment (SOD3). This chapter focuses on the role of redox mechanisms regulating SOD2 and SOD3, with an emphasis on these processes in the setting of pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary/metabolism , Pulmonary Circulation , Superoxide Dismutase/metabolism , Animals , Antioxidants/metabolism , Gene Expression Regulation, Enzymologic , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction , Superoxide Dismutase/genetics , Superoxides/metabolism
14.
Microcirculation ; 24(6)2017 08.
Article in English | MEDLINE | ID: mdl-28236639

ABSTRACT

OBJECTIVE: Pericytes surround the endothelial cells of the microvasculature where they serve as active participants in crucial vascular functions such as angiogenesis, stability, and permeability. However, pericyte loss or dysfunction has been described in a number of pathologies. Targeting pericytes could therefore prove instrumental in the further development of vascular therapeutics. METHODS: To target the pericyte, a proteomic-based approach using antibody phage display was conducted. We present a novel single-cell selection strategy, with a modified selection step to drive the selection of antibodies toward relevant pericyte epitopes. RESULTS: Characterization of the selected antibodies revealed two antibodies with binding specificity for pericytes. The cognate antigen of one of the antibodies was identified as pericyte-expressed fibronectin. This antibody was shown to be a potent inhibitor of pericyte migration and to induce a pro-angiogenic response when included in a pericyte-endothelial cell co-culture angiogenesis assay. CONCLUSIONS: The selection method provides an efficient platform for the selection of functional antibodies which target pericytes. We obtain an antibody that interacts with a fibronectin epitope important for pericyte mobility and functionality. Targeting of this epitope in pathologies where pericytes are implicated could potentially be of therapeutic benefit.


Subject(s)
Antibodies/pharmacology , Pericytes/drug effects , Proteomics/methods , Antibodies/therapeutic use , Cell Movement/drug effects , Coculture Techniques , Fibronectins/immunology , Humans , Neovascularization, Physiologic/drug effects , Single-Cell Analysis
15.
Free Radic Biol Med ; 97: 478-488, 2016 08.
Article in English | MEDLINE | ID: mdl-27394172

ABSTRACT

Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymorphonuclear leukocytes (neutrophils) and increasing evidence supports a role for EC-SOD in the development of an inflammatory response. Here we show that human EC-SOD is present at the cell surface of isolated neutrophils as well as stored within secretory vesicles. Interestingly, we find that EC-SOD mRNA is absent throughout neutrophil maturation indicating that the protein is synthesized by other cells and subsequently endocytosed by the neutrophil. When secretory vesicles were mobilized by neutrophil stimulation using formyl-methionyl-leucyl-phenylalanine (fMLF) or phorbol 12-myristate 13-acetate (PMA), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide in the extracellular space, but does not affect the capacity to generate neutrophil extracellular traps (NETs). Consequently, our data signifies that EC-SOD released from activated neutrophils affects the redox conditions of the extracellular space and may offer protection against highly reactive oxygen species such as hydroxyl radicals otherwise generated as a result of respiratory burst activity of activated neutrophils.


Subject(s)
Neutrophils/enzymology , Secretory Vesicles/enzymology , Superoxide Dismutase/metabolism , Animals , Cells, Cultured , Extracellular Space/enzymology , Extracellular Traps/metabolism , Gene Expression , Humans , Mice , Neutrophil Activation , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Respiratory Burst , Superoxide Dismutase/genetics
16.
Biochemistry ; 55(2): 294-303, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26678563

ABSTRACT

Osteopontin (OPN) is a multifunctional integrin-binding protein present in several tissues and body fluids. OPN is a substrate for the enzyme transglutaminase 2 (TG2), which catalyzes inter- and intramolecular cross-linking affecting the biological activity of the protein. Polymerization of OPN by intermolecular cross-linking has mostly been studied using relatively high TG2 concentrations, whereas the effect of lower concentrations of TG2 has remained unexplored. Here we show that TG2 at physiologically relevant concentrations predominantly catalyzes the formation of intramolecular cross-links in OPN. By site-directed mutagenesis and mass spectrometry, we demonstrate that Gln(42) and Gln(193) serve as the primary amine acceptor sites for isopeptide bond formation. We find that Gln(42) predominantly is linked to Lys(4) and that Gln(193) participates in a cross-link with Lys(154), Lys(157), or Lys(231). The formation of specific isopeptide bonds was not dependent on OPN phosphorylation, and similar patterns of cross-linking were observed in human and mouse OPN. Furthermore, we find that OPN purified from human urine contains the Lys(154)-Gln(193) isopeptide bond, indicating that intramolecular cross-linking of OPN occurs in vivo. Collectively, these data suggest that specific intramolecular cross-linking in the N- and C-terminal parts of OPN is most likely the dominant step in TG2-catalyzed modification of OPN.


Subject(s)
GTP-Binding Proteins/metabolism , Osteopontin/chemistry , Osteopontin/metabolism , Transglutaminases/metabolism , Amino Acid Sequence , GTP-Binding Proteins/chemistry , Humans , Molecular Sequence Data , Osteopontin/genetics , Osteopontin/urine , Protein Glutamine gamma Glutamyltransferase 2 , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transglutaminases/chemistry
17.
Nat Immunol ; 17(2): 150-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26595890

ABSTRACT

Mucosal surfaces are exposed to environmental substances and represent a major portal of entry for microorganisms. The innate immune system is responsible for early defense against infections and it is believed that the interferons (IFNs) constitute the first line of defense against viruses. Here we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity in a manner dependent on neutrophils. This study therefore identifies a previously unknown layer of antiviral defense that exerts its action on epithelial surfaces before the classical IFN response is operative.


Subject(s)
Immunity, Innate , Interferons/metabolism , Mucous Membrane/immunology , Mucous Membrane/metabolism , Virus Diseases/immunology , Virus Diseases/metabolism , Animals , Cell Line , Chemokine CXCL10/biosynthesis , Disease Models, Animal , Female , Gene Expression , Glycosylation , Herpes Simplex/genetics , Herpes Simplex/immunology , Herpes Simplex/metabolism , Herpes Simplex/virology , Herpesvirus 2, Human/immunology , Humans , Interferons/genetics , Ligands , Mice , Mice, Knockout , Mucous Membrane/virology , Neutrophils/immunology , Neutrophils/metabolism , Polysaccharides/immunology , Receptors, CXCR3/deficiency , Receptors, CXCR3/metabolism , Vagina/immunology , Vagina/metabolism , Vagina/virology , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Viral Load , Virus Diseases/virology
18.
J Biol Chem ; 290(36): 21915-24, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26195635

ABSTRACT

Stanniocalcin-1 (STC1) is a disulfide-bound homodimeric glycoprotein, first identified as a hypocalcemic hormone important for maintaining calcium homeostasis in teleost fish. STC1 was later found to be widely expressed in mammals, although it is not believed to function in systemic calcium regulation in these species. Several physiological functions of STC1 have been reported, although many molecular details are still lacking. We here demonstrate that STC1 is an inhibitor of the metzincin metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A), which modulates insulin-like growth factor (IGF) signaling through proteolytic cleavage of IGF-binding proteins (IGFBPs). STC1 potently (Ki = 68 pm) inhibits PAPP-A cleavage of IGFBP-4, and we show in a cell-based assay that STC1 effectively antagonizes PAPP-A-mediated type 1 IGF receptor (IGF1R) phosphorylation. It has recently been found that the homologous STC2 inhibits PAPP-A proteolytic activity, and that this depends on the formation of a covalent complex between the inhibitor and the proteinase, mediated by Cys-120 of STC2. We find that STC1 is unable to bind covalently to PAPP-A, in agreement with the absence of a corresponding cysteine residue. It rather binds to PAPP-A with high affinity (KD = 75 pm). We further demonstrate that both STC1 and STC2 show inhibitory activity toward PAPP-A2, but not selected serine proteinases and metalloproteinases. We therefore conclude that the STCs are proteinase inhibitors, probably restricted in specificity to the pappalysin family of metzincin metalloproteinases. Our data are the first to identify STC1 as a proteinase inhibitor, suggesting a previously unrecognized function of STC1 in the IGF system.


Subject(s)
Glycoproteins/metabolism , Insulin-Like Growth Factor Binding Protein 4/metabolism , Pregnancy-Associated Plasma Protein-A/metabolism , Blotting, Western , Glycoproteins/genetics , Glycoproteins/pharmacology , HEK293 Cells , Humans , Insulin-Like Growth Factor Binding Protein 4/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Phosphorylation/drug effects , Pregnancy-Associated Plasma Protein-A/antagonists & inhibitors , Pregnancy-Associated Plasma Protein-A/genetics , Proteolysis/drug effects , Receptor, IGF Type 1 , Receptors, Somatomedin/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Biochemistry ; 54(19): 2943-56, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25910219

ABSTRACT

Mutations in the transforming growth factor beta-induced (TGFBI) gene result in a group of hereditary diseases of the cornea that are collectively known as TGFBI corneal dystrophies. These mutations translate into amino acid substitutions mainly within the fourth fasciclin 1 domain (FAS1-4) of the transforming growth factor beta-induced protein (TGFBIp) and cause either amyloid or nonamyloid protein aggregates in the anterior and central parts of the cornea, depending on the mutation. The A546T substitution in TGFBIp causes lattice corneal dystrophy (LCD), which manifests as amyloid-type aggregates in the corneal stroma. We previously showed that the A546T substitution renders TGFBIp and the FAS1-4 domain thermodynamically less stable compared with the wild-type (WT) protein, and the mutant FAS1-4 is prone to amyloid formation in vitro. In the present study, we identified the core of A546T FAS1-4 amyloid fibrils. Significantly, we identified the Y571-R588 region of TGFBIp, which we previously found to be enriched in amyloid deposits in LCD patients. We further found that the Y571-R588 peptide seeded fibrillation of A546T FAS1-4, and, more importantly, we demonstrated that native TGFBIp aggregates in the presence of fibrils formed by the core peptide. Collectively, these data suggest an involvement of the Y571-R588 peptide in LCD pathophysiology.


Subject(s)
Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Transforming Growth Factor beta/chemistry , Transforming Growth Factor beta/metabolism , Corneal Dystrophies, Hereditary/metabolism , Corneal Stroma/metabolism , Humans , Microscopy, Electron, Transmission , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
20.
J Immunol ; 194(11): 5488-96, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25911760

ABSTRACT

Complement component C4 is a central protein in the classical and lectin pathways within the complement system. During activation of complement, its major fragment C4b becomes covalently attached to the surface of pathogens and altered self-tissue, where it acts as an opsonin marking the surface for removal. Moreover, C4b provides a platform for assembly of the proteolytically active convertases that mediate downstream complement activation by cleavage of C3 and C5. In this article, we present the crystal and solution structures of the 195-kDa C4b. Our results provide the molecular details of the rearrangement accompanying C4 cleavage and suggest intramolecular flexibility of C4b. The conformations of C4b and its paralogue C3b are shown to be remarkably conserved, suggesting that the convertases from the classical and alternative pathways are likely to share their overall architecture and mode of substrate recognition. We propose an overall molecular model for the classical pathway C5 convertase in complex with C5, suggesting that C3b increases the affinity for the substrate by inducing conformational changes in C4b rather than a direct interaction with C5. C4b-specific features revealed by our structural studies are probably involved in the assembly of the classical pathway C3/C5 convertases and C4b binding to regulators.


Subject(s)
Complement Activation/immunology , Complement C4b/chemistry , Complement Pathway, Classical/immunology , Complement Pathway, Mannose-Binding Lectin/immunology , Complement C3-C5 Convertases/metabolism , Complement C3b/genetics , Complement C3b/immunology , Complement C4b/immunology , Complement C5/genetics , Complement C5/immunology , Crystallography, X-Ray , Humans , Opsonin Proteins/immunology , Protein Binding/immunology , Protein Processing, Post-Translational , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...