Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Microorganisms ; 12(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38792677

ABSTRACT

Cyclospora cayetanensis is a foodborne parasite that causes cyclosporiasis, an enteric illness in humans. Genotyping methods are used to genetically discriminate between specimens from cyclosporiasis cases and can complement source attribution investigations if the method is sufficiently sensitive for application to food items. A very sensitive targeted amplicon sequencing (TAS) assay for genotyping C. cayetanensis encompassing 52 loci was recently designed. In this study, we analyzed 66 genetically diverse clinical specimens to assess the change in phylogenetic resolution between the TAS assay and a currently employed eight-marker scheme. Of the 52 markers, ≥50 were successfully haplotyped for all specimens, and these results were used to generate a hierarchical cluster dendrogram. Using a previously described statistical approach to dissect hierarchical trees, the 66 specimens resolved into 24 and 27 distinct genetic clusters for the TAS and an 8-loci scheme, respectively. Although the specimen composition of 15 clusters was identical, there were substantial differences between the two dendrograms, highlighting the importance of both inclusion of additional genome coverage and choice of loci to target for genotyping. To evaluate the ability to genetically link contaminated food samples with clinical specimens, C. cayetanensis was genotyped from DNA extracted from raspberries inoculated with fecal specimens. The contaminated raspberry samples were assigned to clusters with the corresponding clinical specimen, demonstrating the utility of the TAS assay for traceback efforts.

2.
Article in English | MEDLINE | ID: mdl-37841306

ABSTRACT

Human-infecting Cyclospora was recently characterized as three species, two of which (C. cayetanensis and C. ashfordi) are currently responsible for all known human infections in the USA, yet much remains unknown about the genetic structure within these two species. Here, we investigate Cyclospora genotyping data from 2018 through 2022 to ascertain if there are temporal patterns in the genetic structure of Cyclospora parasites that cause infections in US residents from year to year. First, we investigate three levels of genetic characterization: species, subpopulation, and strain, to elucidate annual trends in Cyclospora infections. Next, we determine if shifts in genetic diversity can be linked to any of the eight loci used in our Cyclospora genotyping approach. We observed fluctuations in the abundance of Cyclospora types at the species and subpopulation levels, but no significant temporal trends were identified; however, we found recurrent and sporadic strains within both C. ashfordi and C. cayetanensis. We also uncovered major shifts in the mitochondrial genotypes in both species, where there was a universal increase in abundance of a specific mitochondrial genotype that was relatively abundant in 2018 but reached near fixation (was observed in over 96% of isolates) in C. ashfordi by 2022. Similarly, this allele jumped from 29% to 82% relative abundance of isolates belonging to C. cayetanensis. Overall, our analysis uncovers previously unknown temporal-genetic patterns in US Cyclospora types from 2018 through 2022 and is an important step to presenting a clearer picture of the factors influencing cyclosporiasis outbreaks in the USA.

3.
Nat Commun ; 14(1): 3270, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277333

ABSTRACT

Batrachochytrium salamandrivorans (Bsal) is a fungal pathogen of amphibians that is emerging in Europe and could be introduced to North America through international trade or other pathways. To evaluate the risk of Bsal invasion to amphibian biodiversity, we performed dose-response experiments on 35 North American species from 10 families, including larvae from five species. We discovered that Bsal caused infection in 74% and mortality in 35% of species tested. Both salamanders and frogs became infected and developed Bsal chytridiomycosis. Based on our host susceptibility results, environmental suitability conditions for Bsal, and geographic ranges of salamanders in the United States, predicted biodiversity loss is expected to be greatest in the Appalachian Region and along the West Coast. Indices of infection and disease susceptibility suggest that North American amphibian species span a spectrum of vulnerability to Bsal chytridiomycosis and most amphibian communities will include an assemblage of resistant, carrier, and amplification species. Predicted salamander losses could exceed 80 species in the United States and 140 species in North America.


Subject(s)
Chytridiomycota , Mycoses , Humans , Animals , Commerce , Chytridiomycota/physiology , Internationality , Amphibians/microbiology , Urodela/microbiology , Biodiversity , Anura , North America/epidemiology , Mycoses/veterinary , Mycoses/microbiology
4.
Mol Ecol ; 30(9): 2145-2161, 2021 05.
Article in English | MEDLINE | ID: mdl-33107122

ABSTRACT

Land use change can elevate disease risk by creating conditions beneficial to species that carry zoonotic pathogens. Observations of concordant global trends in increased pathogen prevalence or disease incidence and landscape change have generated concerns that urbanization could increase transmission risk of some pathogens. Yet host-pathogen relationships underlying transmission risk have not been well characterized within cities, even where contact between humans and species capable of transmitting pathogens of concern occurs. We addressed this deficit by testing the hypothesis that areas in cities experiencing greater population loss and infrastructure decline (i.e., counter-urbanization) can support a greater diversity of host species and a larger and more diverse pool of pathogens. We did so by characterizing pathogenic Leptospira infection relative to rodent host richness and abundance across a mosaic of abandonment in post-Katrina New Orleans (Louisiana, USA). We found that Leptospira infection loads were highest in areas that harboured increased rodent species richness (which ranged from one to four rodent species detected). Areas with greater host co-occurrence also harboured a greater abundance of hosts, including the host species most likely to carry high infection loads, indicating that Leptospira infection can be amplified by increases in overall and relative host abundance. Evidence of shared infection among rodent host species indicates that cross-species transmission of Leptospira probably increases infection at sites with greater host richness. Additionally, evidence that rodent co-occurrence and abundance and Leptospira infection load parallel abandonment suggests that counter-urbanization can elevate zoonotic disease risk within cities, particularly in underserved communities that are burdened with disproportionate concentrations of derelict properties.


Subject(s)
Leptospira , Leptospirosis , Animals , Cities , Leptospira/genetics , Leptospirosis/epidemiology , Louisiana , Rodentia , Zoonoses/epidemiology
5.
Parasit Vectors ; 13(1): 577, 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33189151

ABSTRACT

BACKGROUND: Trypanosoma cruzi - the causative agent of Chagas disease - is known to circulate in commensal pests, but its occurrence in urban environments is not well understood. We addressed this deficit by determining the distribution and prevalence of T. cruzi infection in urban populations of commensal and wild rodents across New Orleans (Louisiana, USA). We assessed whether T. cruzi prevalence varies according to host species identity and species co-occurrences, and whether T. cruzi prevalence varies across mosaics of abandonment that shape urban rodent demography and assemblage structure in the city. METHODS: Leveraging city-wide population and assemblage surveys, we tested 1428 rodents comprising 5 species (cotton rats, house mice, Norway rats, rice rats and roof rats) captured at 98 trapping sites in 11 study areas across New Orleans including nine residential neighborhoods and a natural area in Orleans Parish and a neighborhood in St. Bernard Parish. We also assayed Norway rats at one site in Baton Rouge (Louisiana, USA). We used chi-square tests to determine whether infection prevalence differed among host species, among study areas, and among trapping sites according to the number of host species present. We used generalized linear mixed models to identify predictors of T. cruzi infection for all rodents and each host species, respectively. RESULTS: We detected T. cruzi in all host species in all study areas in New Orleans, but not in Baton Rouge. Though overall infection prevalence was 11%, it varied by study area and trapping site. There was no difference in prevalence by species, but roof rats exhibited the broadest geographical distribution of infection across the city. Infected rodents were trapped in densely populated neighborhoods like the French Quarter. Infection prevalence seasonally varied with abandonment, increasing with greater abandonment during the summer and declining with greater abandonment during the winter. CONCLUSIONS: Our findings illustrate that T. cruzi can be widespread in urban landscapes, suggesting that transmission and disease risk is greater than is currently recognized. Our findings also suggest that there is disproportionate risk of transmission in historically underserved communities, which could reinforce long-standing socioecological disparities in New Orleans and elsewhere.


Subject(s)
Chagas Disease/veterinary , Disease Reservoirs/parasitology , Rodent Diseases/epidemiology , Rodentia/parasitology , Animals , Mice , New Orleans/epidemiology , Prevalence , Rats , Sigmodontinae , Trypanosoma cruzi/isolation & purification
6.
PLoS One ; 15(9): e0235370, 2020.
Article in English | MEDLINE | ID: mdl-32915779

ABSTRACT

Controlled experiments are one approach to understanding the pathogenicity of etiologic agents to susceptible hosts. The recently discovered fungal pathogen, Batrachochytrium salamandrivorans (Bsal), has resulted in a surge of experimental investigations because of its potential to impact global salamander biodiversity. However, variation in experimental methodologies could thwart knowledge advancement by introducing confounding factors that make comparisons difficult among studies. Thus, our objective was to evaluate if variation in experimental methods changed inferences made on the pathogenicity of Bsal. We tested whether passage duration of Bsal culture, exposure method of the host to Bsal (water bath vs. skin inoculation), Bsal culturing method (liquid vs. plated), host husbandry conditions (aquatic vs. terrestrial), and skin swabbing frequency influenced diseased-induced mortality in a susceptible host species, the eastern newt (Notophthalmus viridescens). We found that disease-induced mortality was faster for eastern newts when exposed to a low passage isolate, when newts were housed in terrestrial environments, and if exposure to zoospores occurred via water bath. We did not detect differences in disease-induced mortality between culturing methods or swabbing frequencies. Our results illustrate the need to standardize methods among Bsal experiments. We provide suggestions for future Bsal experiments in the context of hypothesis testing and discuss the ecological implications of our results.


Subject(s)
Chytridiomycota/pathogenicity , Mycoses/veterinary , Urodela/microbiology , Animals , Cell Culture Techniques , Chytridiomycota/isolation & purification , Chytridiomycota/physiology , Mycoses/microbiology , Mycoses/pathology , Skin/microbiology , Skin/pathology , Staining and Labeling , Urodela/physiology
7.
Sci Rep ; 10(1): 5584, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221329

ABSTRACT

Batrachochytrium salamandrivorans (Bsal) is an emerging invasive pathogen that is highly pathogenic to salamander species. Modeling infection dynamics in this system can facilitate proactive efforts to mitigate this pathogen's impact on North American species. Given its widespread distribution and high abundance, the eastern newt (Notophthalmus viridescens) has the potential to significantly influence Bsal epidemiology. We designed experiments to 1) estimate contact rates given different host densities and habitat structure and 2) estimate the probability of transmission from infected to susceptible individuals. Using parameter estimates from data generated during these experiments, we modeled infection and disease outcomes for a population of newts using a system of differential equations. We found that host contact rates were density-dependent, and that adding habitat structure reduced contacts. The probability of Bsal transmission given contact between newts was very high (>90%) even at early stages of infection. Our simulations show rapid transmission of Bsal among individuals following pathogen introduction, with infection prevalence exceeding 90% within one month and >80% mortality of newts in three months. Estimates of basic reproductive rate (R0) of Bsal for eastern newts were 1.9 and 3.2 for complex and simple habitats, respectively. Although reducing host density and increasing habitat complexity might decrease transmission, these management strategies may be ineffective at stopping Bsal invasion in eastern newt populations due to this species' hyper-susceptibility.


Subject(s)
Chytridiomycota/physiology , Salamandridae/microbiology , Animals , Ecosystem , Mycoses/microbiology , Mycoses/transmission , Mycoses/veterinary , Population Density , Tennessee
8.
J Microbiol Immunol Infect ; 53(4): 622-633, 2020 Aug.
Article in English | MEDLINE | ID: mdl-30709717

ABSTRACT

BACKGROUND/PURPOSE: The parasitic protozoa Trypanosoma cruzi, is widely distributed throughout the Americas. We explored the nature of T. cruzi infection in small rodents from New Orleans (LA, USA), an enzootic region of the parasite in North America. METHODS: We characterized the full complement of discrete typing units (DTUs) in rodent hosts through next-generation metabarcoding, as conventional PCR and Sanger sequencing approaches only detect the dominant genotype in biological samples. We assayed DTU diversity in tissue samples from 6 T. cruzi PCR positive rodents. The intergenic region of the mini-exon gene was amplified and sequenced on a MiSeq platform. A total of 141 sequences were aligned using Muscle, and TCS networks were constructed to identify DTUs in the samples. RESULTS: We detected distinct and varying assemblages of DTUs in the rodent hosts. Highly diverse DTU assemblages were detected, with 6-32 haplotypes recovered per individual, spanning multiple DTUs (TcI,TcII, TcIV, TcV and TcVI). Haplotypes varied in frequencies from 82% to less than 0.1%. DTU composition varied according to the tissue analyzed. Rural and urban rodents carried similarly diverse DTU assemblages, though urban rodent species tended to harbor more haplotypes than their sylvatic counterparts. CONCLUSION: Our results affirm that mammalian hosts can concurrently harbor a diverse complement of parasites, and indicate that there is greater diversity of T. cruzi DTUs present in North America than previously thought. Further investigation is warranted to understand the role of commensal rodents as a reservoir for T. cruzi in sylvatic and peridomestic environments.


Subject(s)
Chagas Disease/veterinary , Genetic Variation , Genotype , High-Throughput Nucleotide Sequencing , Rodentia/parasitology , Trypanosoma cruzi/classification , Trypanosoma cruzi/genetics , Animals , Chagas Disease/parasitology , Chagas Disease/transmission , DNA, Intergenic , DNA, Protozoan/genetics , Trypanosoma cruzi/pathogenicity , United States
9.
Emerg Infect Dis ; 24(12): 2176-2183, 2018 12.
Article in English | MEDLINE | ID: mdl-30457534

ABSTRACT

Rat lungworm (Angiostrongylus cantonensis), a parasitic nematode that can cause eosinophilic meningitis in humans, was first detected in New Orleans, Louisiana, USA, in the mid-1980s and now appears to be widespread in the southeastern United States. We assessed the distribution, prevalence, and intensity of A. cantonensis infection in New Orleans by examining lung biopsy samples of rodents trapped at 96 sites in 9 areas in Orleans Parish and 1 area in neighboring St. Bernard Parish during May 2015 through February 2017. These areas were selected to capture contrasting levels of income, flooding, and pos-disaster landscape management after Hurricane Katrina in 2005. We detected A. cantonensis in all areas and in 3 of the 4 rat species trapped. Overall prevalence was ≈38% but varied by area, host species, and host species co-occurrence. Infection intensity also varied by host species. These findings suggest that socioecological analysis of heterogeneity in definitive and intermediate host infection could improve understanding of health risks across the city.


Subject(s)
Disasters , Rodentia , Strongylida Infections/epidemiology , Strongylida Infections/parasitology , Animals , Geography, Medical , New Orleans/epidemiology , Prevalence , Rats , Risk Assessment , Risk Factors
10.
Ecohealth ; 14(4): 771-782, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29164472

ABSTRACT

It is becoming increasingly likely that rodents will drive future disease epidemics with the continued expansion of cities worldwide. Though transmission risk is a growing concern, relatively little is known about pathogens carried by urban rats. Here, we assess whether the diversity and prevalence of Bartonella bacteria differ according to the (co)occurrence of rat hosts across New Orleans, LA (NO), where both Norway (Rattus norvegicus) and roof rats (Rattus rattus) are found, relative to New York City (NYC) which only harbors Norway rats. We detected human pathogenic Bartonella species in both NYC and New Orleans rodents. We found that Norway rats in New Orleans harbored a more diverse assemblage of Bartonella than Norway rats in NYC and that Norway rats harbored a more diverse and distinct assemblage of Bartonella compared to roof rats in New Orleans. Additionally, Norway rats were more likely to be infected with Bartonella than roof rats in New Orleans. Flea infestation appears to be an important predictor of Bartonella infection in Norway rats across both cities. These findings illustrate that pathogen infections can be heterogeneous in urban rodents and indicate that further study of host species interactions could clarify variation in spillover risk across cities.


Subject(s)
Bartonella/isolation & purification , Disease Reservoirs/microbiology , Rodent Diseases/epidemiology , Animals , Female , Male , New Orleans/epidemiology , New York City/epidemiology , Rats , Zoonoses
12.
Ecol Appl ; 25(3): 673-84, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26214913

ABSTRACT

Migratory bird populations and survival are affected by conditions experienced during migration. While many studies and conservation and management efforts focus on terrestrial stoppage and staging areas, the aerial environment through which migrants move also is subjected to anthropogenic impacts with potential consequences to migratory movement and survival. During autumn migration, the northern coastline of Lake Superior acts as an ecological barrier for many landbirds migrating out of the boreal forests of North America. From 24 observation points, we assessed the diurnal movements of birds throughout autumn migration, 2008-2010, within a 210 × 10 km coastal region along the northern coast of Lake Superior. Several raptor species showed patterns in airspace associated with topographic features such as proximity to the coastline and presence of ridgelines. Funneling movement, commonly used to describe the concentration of raptors along a migratory diversion line that either prevents or enhances migration progress, occurred only for Bald and Golden Eagles. This suggests a "leaky" migration funnel for most migratory raptors (e.g., migrating birds exiting the purported migration corridor). Passerines migrating during the late season showed more spatial and temporal structure in airspace distribution than raptors did, including funneling and an association with airspace near the coast. We conclude that (1) the diurnal use of airspace by many migratory landbirds is patterned in space and time, (2) autumn count sites situated along ecological barriers substantially underestimate the number of raptors due to "leakage" out of these concentration areas, and (3) the magnitude and structure of diurnal passerine movements in airspace have been overlooked. The heavy and structured use of airspace by migratory landbirds, especially the airspace associated with anthropogenic development (e.g., buildings, towers, turbines) necessitates a shift in focus to airspace management and conservation attention for these animals.


Subject(s)
Animal Migration/physiology , Birds/physiology , Circadian Rhythm , Ecosystem , Flight, Animal , Animals , Birds/classification , Great Lakes Region
13.
PLoS One ; 9(9): e107441, 2014.
Article in English | MEDLINE | ID: mdl-25222375

ABSTRACT

Many pathogens infect more than one host species, and clarifying how these different hosts contribute to pathogen dynamics can facilitate the management of pathogens and can lend insight into the functioning of pathogens in ecosystems. In this study, we investigated a suite of native and non-native amphibian hosts of the pathogen Batrachochytrium dendrobatidis (Bd) across multiple scales to identify potential mechanisms that may drive infection patterns in the Colorado study system. Specifically, we aimed to determine if: 1) amphibian populations vary in Bd infection across the landscape, 2) amphibian community composition predicts infection (e.g., does the presence or abundance of any particular species influence infection in others?), 3) amphibian species vary in their ability to produce infectious zoospores in a laboratory infection, 4) heterogeneity in host ability observed in the laboratory scales to predict patterns of Bd prevalence in the landscape. We found that non-native North American bullfrogs (Lithobates catesbeianus) are widespread and have the highest prevalence of Bd infection relative to the other native species in the landscape. Additionally, infection in some native species appears to be related to the density of sympatric L. catesbeianus populations. At the smaller host scale, we found that L. catesbeianus produces more of the infective zoospore stage relative to some native species, but that this zoospore output does not scale to predict infection in sympatric wild populations of native species. Rather, landscape level infection relates most strongly to density of hosts at a wetland as well as abiotic factors. While non-native L. catesbeianus have high levels of Bd infection in the Colorado Front Range system, we also identified Bd infection in a number of native amphibian populations allopatric with L. catesbeianus, suggesting that multiple host species are important contributors to the dynamics of the Bd pathogen in this landscape.


Subject(s)
Amphibians/microbiology , Mycoses/pathology , Animals , Chytridiomycota/pathogenicity , Colorado , Rana catesbeiana/microbiology
14.
Mol Ecol ; 21(21): 5151-4, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23075064

ABSTRACT

Imagine a single pathogen that is responsible for mass mortality of over a third of an entire vertebrate class. For example, if a single pathogen were causing the death, decline and extinction of 30% of mammal species (including humans), the entire world would be paying attention. This is what has been happening to the world's amphibians - the frogs, toads and salamanders that are affected by the chytrid fungal pathogen, Batrachochytrium dendrobatidis (referred to as Bd), which are consequently declining at an alarming rate. It has aptly been described as the worst pathogen in history in terms of its effects on biodiversity (Kilpatrick et al. 2010). The pathogen was only formally described about 13 years ago (Longcore et al. 1999), and scientists are still in the process of determining where it came from and investigating the question: why now? Healthy debate has ensued as to whether Bd is a globally endemic organism that only recently started causing high mortality due to shifting host responses and/or environmental change (e.g. Pounds et al. 2006) or whether a virulent strain of the pathogen has rapidly disseminated around the world in recent decades, affecting new regions with a vengeance (e.g. Morehouse et al. 2003; Weldon et al. 2004; Lips et al. 2008). We are finally beginning to shed more light on this question, due to significant discoveries that have emerged as a result of intensive DNA-sequencing methods comparing Bd isolates from different amphibian species across the globe. Evidence is mounting that there is indeed a global panzootic lineage of Bd (BdGPL) in addition to what appear to be more localized endemic strains (Fisher et al. 2009; James et al. 2009; Farrer et al. 2011). Additionally, BdGPL appears to be a hypervirulent strain that has resulted from the hybridization of different Bd strains that came into contact in recent decades, and is now potentially replacing the less-virulent endemic strains of the pathogen (Farrer et al. 2011). In a new study published in this issue of Molecular Ecology, Schloegel et al. (2012) identify an additional unique Bd lineage that is endemic to the Atlantic Brazilian rainforests (Bd-Brazil) and provide striking evidence that the Bd-Brazil lineage has sexually recombined with the BdGPL lineage in an area where the two lineages likely came into contact as a result of classic anthropogenically mediated 'pathogen pollution'(see below). Fungal pathogens, including Bd, have the propensity to form recombinant lineages when allopatric populations that have not yet formed genetic reproductive barriers are provided with opportunities to intermingle, and virulent strains may be selected for because they tend to be highly transmissible (Fisher et al. 2012). As Schloegel et al. (2012) point out, the demonstrated ability for Bd to undergo meiosis may also mean that it has the capacity to form a resistant spore stage (as yet undiscovered), based on extrapolation from other sexually reproducing chytrids that all have spore stages.


Subject(s)
Chimera/genetics , Chytridiomycota/genetics , Genotype , Rana catesbeiana/microbiology , Animals
15.
Conserv Biol ; 25(3): 556-66, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21342266

ABSTRACT

Ecological theory predicts that species with restricted geographic ranges will have the highest probability of extinction, but species with extensive distributions and high population densities can also exhibit widespread population losses. In the western United States populations of northern leopard frogs (Lithobates pipiens)-historically one of the most widespread frogs in North America-have declined dramatically in abundance and geographic distribution. To assess the status of leopard frogs in Colorado and evaluate causes of decline, we coupled statewide surveys of 196 historically occupied sites with intensive sampling of 274 wetlands stratified by land use. We used an information-theoretic approach to evaluate the contributions of factors at multiple spatial extents in explaining the contemporary distribution of leopard frogs. Our results indicate leopard frogs have declined in Colorado, but this decline was regionally variable. The lowest proportion of occupied wetlands occurred in eastern Colorado (2-28%), coincident with urban development and colonization by non-native bullfrogs (Lithobates catesbeianus). Variables at several spatial extents explained observed leopard frog distributional patterns. In low-elevation wetlands introduced fishes, bullfrogs, and urbanization or suburbanization associated negatively with leopard frog occurrence, whereas wetland area was positively associated with occurrence. Leopard frogs were more abundant and widespread west of the Continental Divide, where urban development and bullfrog abundance were low. Although the pathogenic chytrid Batrachochytrium dendrobatidis (Bd) was not selected in our best-supported models, the nearly complete extirpation of leopard frogs from montane wetlands could reflect the individual or interactive effects of Bd and climate patterns. Our results highlight the importance of considering multiple, competing hypotheses to explain species declines, particularly when implicated factors operate at different spatial extents.


Subject(s)
Conservation of Natural Resources , Environment , Introduced Species , Rana catesbeiana , Rana pipiens , Animals , Biodiversity , Colorado , Endangered Species , Population Density , Population Dynamics , Rana catesbeiana/microbiology , Rana pipiens/microbiology , Urban Renewal
SELECTION OF CITATIONS
SEARCH DETAIL
...