Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters










Publication year range
1.
Elife ; 132024 May 29.
Article in English | MEDLINE | ID: mdl-38809771

ABSTRACT

The yeast SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a 'pincer-like' conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.


Subject(s)
Adenosine Triphosphatases , Histones , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/chemistry , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Chromatin Assembly and Disassembly , Protein Binding , Protein Multimerization
2.
Res Sq ; 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37546845

ABSTRACT

The SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Numerous studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a "pincer-like" conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitinylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.

3.
Sci Adv ; 9(15): eadf7586, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37058572

ABSTRACT

Sirtuin 6 (SIRT6) is a multifaceted protein deacetylase/deacylase and a major target for small-molecule modulators of longevity and cancer. In the context of chromatin, SIRT6 removes acetyl groups from histone H3 in nucleosomes, but the molecular basis for its nucleosomal substrate preference is unknown. Our cryo-electron microscopy structure of human SIRT6 in complex with the nucleosome shows that the catalytic domain of SIRT6 pries DNA from the nucleosomal entry-exit site and exposes the histone H3 N-terminal helix, while the SIRT6 zinc-binding domain binds to the histone acidic patch using an arginine anchor. In addition, SIRT6 forms an inhibitory interaction with the C-terminal tail of histone H2A. The structure provides insights into how SIRT6 can deacetylate both H3 K9 and H3 K56.


Subject(s)
Nucleosomes , Sirtuins , Humans , Histones/metabolism , Cryoelectron Microscopy , Chromatin , Sirtuins/genetics
4.
bioRxiv ; 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36993468

ABSTRACT

Sirtuin 6 (SIRT6) is a multifaceted protein deacetylase/deacylase and a major target for small-molecule modulators of longevity and cancer. In the context of chromatin, SIRT6 removes acetyl groups from histone H3 in nucleosomes, but the molecular basis for its nucleosomal substrate preference is unknown. Our cryo-electron microscopy structure of human SIRT6 in complex with the nucleosome shows that the catalytic domain of SIRT6 pries DNA from the nucleosomal entry-exit site and exposes the histone H3 N-terminal helix, while the SIRT6 zinc-binding domain binds to the histone acidic patch using an arginine anchor. In addition, SIRT6 forms an inhibitory interaction with the C-terminal tail of histone H2A. The structure provides insights into how SIRT6 can deacetylate both H3 K9 and H3 K56. Teaser: The structure of the SIRT6 deacetylase/nucleosome complex suggests how the enzyme acts on both histone H3 K9 and K56 residues.

5.
Transcription ; 14(1-2): 18-26, 2023 11.
Article in English | MEDLINE | ID: mdl-36843061

ABSTRACT

Eukaryotic cells rely upon dynamic, multifaceted regulation at each step of RNA biogenesis to maintain mRNA pools and ensure normal protein synthesis. Studies in budding yeast indicate a buffering phenomenon that preserves global mRNA levels through the reciprocal balancing of RNA synthesis rates and mRNA decay. In short, changes in transcription impact the efficiency of mRNA degradation and defects in either nuclear or cytoplasmic mRNA degradation are somehow sensed and relayed to control a compensatory change in mRNA transcription rates. Here, we review current views on molecular mechanisms that might explain this apparent bidirectional sensing process that ensures homeostasis of the stable mRNA pool.


Subject(s)
RNA Stability , Transcription, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Homeostasis , RNA Stability/genetics
6.
Nat Commun ; 13(1): 7052, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396651

ABSTRACT

Histone variant H2A.Z is a conserved feature of nucleosomes flanking protein-coding genes. Deposition of H2A.Z requires ATP-dependent replacement of nucleosomal H2A by a chromatin remodeler related to the multi-subunit enzyme, yeast SWR1C. How these enzymes use ATP to promote this nucleosome editing reaction remains unclear. Here we use single-molecule and ensemble methodologies to identify three ATP-dependent phases in the H2A.Z deposition reaction. Real-time analysis of single nucleosome remodeling events reveals an initial priming step that occurs after ATP addition that involves a combination of both transient DNA unwrapping from the nucleosome and histone octamer deformations. Priming is followed by rapid loss of histone H2A, which is subsequently released from the H2A.Z nucleosomal product. Surprisingly, rates of both priming and the release of the H2A/H2B dimer are sensitive to ATP concentration. This complex reaction pathway provides multiple opportunities to regulate timely and accurate deposition of H2A.Z at key genomic locations.


Subject(s)
Histones , Saccharomyces cerevisiae Proteins , Histones/metabolism , Nucleosomes/metabolism , Chromatin Assembly and Disassembly , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism
7.
Methods Enzymol ; 673: 1-17, 2022.
Article in English | MEDLINE | ID: mdl-35965003

ABSTRACT

The dynamic nature of chromatin is an essential mechanism by which gene expression is regulated. Chromatin is comprised of nucleosomes, an octamer of histone proteins wrapped by DNA, and manipulation of these structures is carried out by a family of proteins known as ATP-dependent chromatin remodeling enzymes. These enzymes carry out a diverse range of activities, from appropriately positioning and adjusting the density of nucleosomes on genes, to installation and removal of histones for sequence variants, to ejection from DNA. These activities have a critical role in the proper maintenance of chromatin architecture, and dysregulation of chromatin remodeling is directly linked to the pathophysiology of various diseases. Mechanistic understanding of chromatin remodeling enzymes is therefore desirable, both as the drivers of this essential cellular activity and as potentially novel therapeutic targets in disease. In this chapter we cover our current methods for characterization of remodeler substrate binding affinity and catalytic activity, leveraging fluorescence polarization and Förster resonance energy transfer assays.


Subject(s)
Chromatin Assembly and Disassembly , Nucleosomes , Adenosine Triphosphate/metabolism , Chromatin , DNA/chemistry , Fluorescence , Histones/metabolism , Transcription Factors/genetics
8.
Elife ; 112022 02 07.
Article in English | MEDLINE | ID: mdl-35129437

ABSTRACT

It is increasingly appreciated that intracellular pH changes are important biological signals. This motivates the elucidation of molecular mechanisms of pH sensing. We determined that a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starvation in Saccharomyces cerevisiae. The SWI/SNF chromatin remodeling complex is a key mediator of this transcriptional response. A glutamine-rich low-complexity domain (QLC) in the SNF5 subunit of this complex, and histidines within this sequence, was required for efficient transcriptional reprogramming. Furthermore, the SNF5 QLC mediated pH-dependent recruitment of SWI/SNF to an acidic transcription factor in a reconstituted nucleosome remodeling assay. Simulations showed that protonation of histidines within the SNF5 QLC leads to conformational expansion, providing a potential biophysical mechanism for regulation of these interactions. Together, our results indicate that pH changes are a second messenger for transcriptional reprogramming during carbon starvation and that the SNF5 QLC acts as a pH sensor.


Subject(s)
Chromosomal Proteins, Non-Histone , Saccharomyces cerevisiae Proteins , Carbon , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
9.
Genes Dev ; 36(1-2): 17-22, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34916303

ABSTRACT

Eukaryotic cells maintain an optimal level of mRNAs through unknown mechanisms that balance RNA synthesis and degradation. We found that inactivation of the RNA exosome leads to global reduction of nascent mRNA transcripts, and that this defect is accentuated by loss of deposition of histone variant H2A.Z. We identify the mRNA for the sirtuin deacetylase Hst3 as a key target for the RNA exosome that mediates communication between RNA degradation and transcription machineries. These findings reveal how the RNA exosome and H2A.Z function together to control a deacetylase, ensuring proper levels of transcription in response to changes in RNA degradation.


Subject(s)
Exosome Multienzyme Ribonuclease Complex , Sirtuins , Exosome Multienzyme Ribonuclease Complex/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Histones/genetics , Histones/metabolism , Homeostasis/genetics , RNA, Messenger/genetics , Sirtuins/genetics , Sirtuins/metabolism
10.
Nat Commun ; 12(1): 3232, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050140

ABSTRACT

Arrays of regularly spaced nucleosomes dominate chromatin and are often phased by alignment to reference sites like active promoters. How the distances between nucleosomes (spacing), and between phasing sites and nucleosomes are determined remains unclear, and specifically, how ATP-dependent chromatin remodelers impact these features. Here, we used genome-wide reconstitution to probe how Saccharomyces cerevisiae ATP-dependent remodelers generate phased arrays of regularly spaced nucleosomes. We find that remodelers bear a functional element named the 'ruler' that determines spacing and phasing in a remodeler-specific way. We use structure-based mutagenesis to identify and tune the ruler element residing in the Nhp10 and Arp8 modules of the INO80 remodeler complex. Generally, we propose that a remodeler ruler regulates nucleosome sliding direction bias in response to (epi)genetic information. This finally conceptualizes how remodeler-mediated nucleosome dynamics determine stable steady-state nucleosome positioning relative to other nucleosomes, DNA bound factors, DNA ends and DNA sequence elements.


Subject(s)
Chromatin Assembly and Disassembly , Nucleosomes/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Animals , Drosophila Proteins/genetics , Drosophila Proteins/isolation & purification , Drosophila Proteins/metabolism , Drosophila melanogaster , Epigenesis, Genetic , Genome, Fungal/genetics , High Mobility Group Proteins/genetics , High Mobility Group Proteins/isolation & purification , High Mobility Group Proteins/metabolism , Histones/genetics , Histones/metabolism , Larva/genetics , Larva/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/isolation & purification , Microfilament Proteins/metabolism , Mutagenesis , Nucleosomes/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae Proteins/metabolism , Whole Genome Sequencing
11.
Nat Commun ; 11(1): 5244, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067423

ABSTRACT

The protein deacetylase SIRT6 maintains cellular homeostasis through multiple pathways that include the deacetylation of histone H3 and repression of transcription. Prior work suggests that SIRT6 is associated with chromatin and can substantially reduce global levels of H3 acetylation, but how SIRT6 is able to accomplish this feat is unknown. Here, we describe an exquisitely tight interaction between SIRT6 and nucleosome core particles, in which a 2:1 enzyme:nucleosome complex assembles via asymmetric binding with distinct affinities. While both SIRT6 molecules associate with the acidic patch on the nucleosome, we find that the intrinsically disordered SIRT6 C-terminus promotes binding at the higher affinity site through recognition of nucleosomal DNA. Together, multivalent interactions couple productive binding to efficient deacetylation of histones on endogenous chromatin. Unique among histone deacetylases, SIRT6 possesses the intrinsic capacity to tightly interact with nucleosomes for efficient activity.


Subject(s)
Chromatin/metabolism , Nucleosomes/metabolism , Sirtuins/metabolism , Acetylation , Chromatin/genetics , Histones/genetics , Histones/metabolism , Humans , Nucleosomes/genetics , Protein Binding , Protein Domains , Sirtuins/chemistry , Sirtuins/genetics
12.
Cell Rep ; 32(10): 108106, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32905765

ABSTRACT

The proper coordination of transcription with DNA replication and repair is central for genomic stability. We investigate how the INO80C chromatin remodeling enzyme might coordinate these genomic processes. We find that INO80C co-localizes with the origin recognition complex (ORC) at yeast replication origins and is bound to replication initiation sites in mouse embryonic stem cells (mESCs). In yeast, INO80C recruitment requires origin sequences but does not require ORC, suggesting that recruitment is independent of pre-replication complex assembly. In both yeast and ESCs, INO80C co-localizes at origins with Mot1 and NC2 transcription factors, and genetic studies suggest that they function together to promote genome stability. Interestingly, nascent transcript sequencing demonstrates that INO80C and Mot1 prevent pervasive transcription through origin sequences, and absence of these factors leads to formation of new DNA double-strand breaks. We propose that INO80C and Mot1/NC2 function through distinct pathways to limit origin transcription, maintaining genomic stability.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Chromatin/metabolism , DNA-Binding Proteins/genetics , Genomic Instability/genetics , Replication Origin/genetics , Transcription Factors/metabolism , Humans
13.
Dev Cell ; 52(3): 309-320.e5, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31902656

ABSTRACT

Movement of chromosome sites within interphase cells is critical for numerous pathways including RNA transcription and genome organization. Yet, a mechanism for reorganizing chromatin in response to these events had not been reported. Here, we delineate a molecular chaperone-dependent pathway for relocating activated gene loci in yeast. Our presented data support a model in which a two-authentication system mobilizes a gene promoter through a dynamic network of polymeric nuclear actin. Transcription factor-dependent nucleation of a myosin motor propels the gene locus through the actin matrix, and fidelity of the actin association was ensured by ARP-containing chromatin remodelers. Motor activity of nuclear myosin was dependent on the Hsp90 chaperone. Hsp90 further contributed by biasing the remodeler-actin interaction toward nucleosomes with the non-canonical histone H2A.Z, thereby focusing the pathway on select sites such as transcriptionally active genes. Together, the system provides a rapid and effective means to broadly yet selectively mobilize chromatin sites.


Subject(s)
Chromatin Assembly and Disassembly , Chromosomes, Fungal , Gene Expression Regulation, Fungal , Histones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcriptional Activation , Actins/genetics , Actins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Histones/genetics , Myo-Inositol-1-Phosphate Synthase/genetics , Myo-Inositol-1-Phosphate Synthase/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics
14.
Nat Commun ; 10(1): 4372, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31558720

ABSTRACT

Dynamic disruption and reassembly of promoter-proximal nucleosomes is a conserved hallmark of transcriptionally active chromatin. Histone H3-K56 acetylation (H3K56Ac) enhances these turnover events and promotes nucleosome assembly during S phase. Here we sequence nascent transcripts to investigate the impact of H3K56Ac on transcription throughout the yeast cell cycle. We find that H3K56Ac is a genome-wide activator of transcription. While H3K56Ac has a major impact on transcription initiation, it also appears to promote elongation and/or termination. In contrast, H3K56Ac represses promiscuous transcription that occurs immediately following replication fork passage, in this case by promoting efficient nucleosome assembly. We also detect a stepwise increase in transcription as cells transit S phase and enter G2, but this response to increased gene dosage does not require H3K56Ac. Thus, a single histone mark can exert both positive and negative impacts on transcription that are coupled to different cell cycle events.


Subject(s)
Cell Cycle/genetics , Histones/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcriptional Activation , Acetylation , Chromatin Assembly and Disassembly/genetics , Histone Code/genetics , Histones/metabolism , Lysine/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
15.
Cell Rep ; 27(10): 2978-2989.e5, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31167142

ABSTRACT

The mammalian sirtuin, SIRT6, is a key tumor suppressor that maintains genome stability and regulates transcription, though how SIRT6 family members control genome stability is unclear. Here, we use multiple genome-wide approaches to demonstrate that the yeast SIRT6 homologs, Hst3 and Hst4, prevent genome instability by tuning levels of both coding and noncoding transcription. While nascent RNAs are elevated in the absence of Hst3 and Hst4, a global impact on steady-state mRNAs is masked by the nuclear exosome, indicating that sirtuins and the exosome provide two levels of regulation to maintain transcription homeostasis. We find that, in the absence of Hst3 and Hst4, increased transcription is associated with excessive DNA-RNA hybrids (R-loops) that appear to lead to new DNA double-strand breaks. Importantly, dissolution of R-loops suppresses the genome instability phenotypes of hst3 hst4 mutants, suggesting that the sirtuins maintain genome stability by acting as a rheostat to prevent promiscuous transcription.


Subject(s)
Genomic Instability , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sirtuins/metabolism , Cell Nucleus/metabolism , DNA Breaks, Double-Stranded , DNA, Fungal/chemistry , DNA, Fungal/metabolism , Exosomes/genetics , Exosomes/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , RNA, Fungal/chemistry , RNA, Fungal/metabolism , RNA, Untranslated/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic
16.
Cell Rep ; 27(2): 374-386.e4, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30970243

ABSTRACT

The SWR1C chromatin remodeling enzyme catalyzes ATP-dependent replacement of nucleosomal H2A with the H2A.Z variant, regulating key DNA-mediated processes such as transcription and DNA repair. Here, we investigate the transient kinetic mechanism of the histone exchange reaction, employing ensemble FRET, fluorescence correlation spectroscopy (FCS), and the steady-state kinetics of ATP hydrolysis. Our studies indicate that SWR1C modulates nucleosome dynamics on both the millisecond and microsecond timescales, poising the nucleosome for the dimer exchange reaction. The transient kinetic analysis of the remodeling reaction performed under single turnover conditions unraveled a striking asymmetry in the ATP-dependent replacement of nucleosomal dimers, promoted by localized DNA unwrapping. Taken together, our transient kinetic studies identify intermediates and provide crucial insights into the SWR1C-catalyzed dimer exchange reaction and shed light on how the mechanics of H2A.Z deposition might contribute to transcriptional regulation in vivo.


Subject(s)
Chromatin Assembly and Disassembly , Histones/metabolism , Nucleosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Animals , Catalysis , Humans , Saccharomyces cerevisiae , Xenopus laevis
17.
Proc Natl Acad Sci U S A ; 115(49): 12447-12452, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30455303

ABSTRACT

Heterochromatin is a silenced chromatin region essential for maintaining genomic stability and driving developmental processes. The complicated structure and dynamics of heterochromatin have rendered it difficult to characterize. In budding yeast, heterochromatin assembly requires the SIR proteins-Sir3, believed to be the primary structural component of SIR heterochromatin, and the Sir2-4 complex, responsible for the targeted recruitment of SIR proteins and the deacetylation of lysine 16 of histone H4. Previously, we found that Sir3 binds but does not compact nucleosomal arrays. Here we reconstitute chromatin fibers with the complete complement of SIR proteins and use sedimentation velocity, molecular modeling, and atomic force microscopy to characterize the stoichiometry and conformation of SIR chromatin fibers. In contrast to fibers with Sir3 alone, our results demonstrate that SIR arrays are highly compact. Strikingly, the condensed structure of SIR heterochromatin fibers requires both the integrity of H4K16 and an interaction between Sir3 and Sir4. We propose a model in which a dimer of Sir3 bridges and stabilizes two adjacent nucleosomes, while a Sir2-4 heterotetramer interacts with Sir3 associated with a nucleosomal trimer, driving fiber compaction.


Subject(s)
Heterochromatin/physiology , Saccharomyces cerevisiae/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Gene Expression Regulation, Fungal , Histones , Protein Binding , Saccharomyces cerevisiae/genetics
19.
Mol Cell ; 67(4): 594-607.e4, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28735899

ABSTRACT

Pervasive transcription initiates from cryptic promoters and is observed in eukaryotes ranging from yeast to mammals. The Set2-Rpd3 regulatory system prevents cryptic promoter function within expressed genes. However, conserved systems that control pervasive transcription within intergenic regions have not been well established. Here we show that Mot1, Ino80 chromatin remodeling complex (Ino80C), and NC2 co-localize on chromatin and coordinately suppress pervasive transcription in S. cerevisiae and murine embryonic stem cells (mESCs). In yeast, all three proteins bind subtelomeric heterochromatin through a Sir3-stimulated mechanism and to euchromatin via a TBP-stimulated mechanism. In mESCs, the proteins bind to active and poised TBP-bound promoters along with promoters of polycomb-silenced genes apparently lacking TBP. Depletion of Mot1, Ino80C, or NC2 by anchor away in yeast or RNAi in mESCs leads to near-identical transcriptome phenotypes, with new subtelomeric transcription in yeast, and greatly increased pervasive transcription in both yeast and mESCs.


Subject(s)
Adenosine Triphosphatases/metabolism , Embryonic Stem Cells/enzymology , Phosphoproteins/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , TATA-Binding Protein Associated Factors/metabolism , Transcription Factors/metabolism , Transcription, Genetic , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/genetics , Binding Sites , Cell Line , DNA-Binding Proteins , Euchromatin/genetics , Euchromatin/metabolism , Gene Expression Regulation, Fungal , Gene Silencing , Genotype , Heterochromatin/genetics , Heterochromatin/metabolism , Phenotype , Phosphoproteins/genetics , Promoter Regions, Genetic , Protein Binding , RNA Interference , Repressor Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , TATA-Binding Protein Associated Factors/genetics , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism , Transcription Factor TFIID , Transcription Factors/genetics , Transfection
20.
Nat Rev Mol Cell Biol ; 18(7): 407-422, 2017 07.
Article in English | MEDLINE | ID: mdl-28512350

ABSTRACT

Cells utilize diverse ATP-dependent nucleosome-remodelling complexes to carry out histone sliding, ejection or the incorporation of histone variants, suggesting that different mechanisms of action are used by the various chromatin-remodelling complex subfamilies. However, all chromatin-remodelling complex subfamilies contain an ATPase-translocase 'motor' that translocates DNA from a common location within the nucleosome. In this Review, we discuss (and illustrate with animations) an alternative, unifying mechanism of chromatin remodelling, which is based on the regulation of DNA translocation. We propose the 'hourglass' model of remodeller function, in which each remodeller subfamily utilizes diverse specialized proteins and protein domains to assist in nucleosome targeting or to differentially detect nucleosome epitopes. These modules converge to regulate a common DNA translocation mechanism, to inform the conserved ATPase 'motor' on whether and how to apply DNA translocation, which together achieve the various outcomes of chromatin remodelling: nucleosome assembly, chromatin access and nucleosome editing.


Subject(s)
Adenosine Triphosphate/metabolism , Chromatin Assembly and Disassembly/physiology , DNA/metabolism , Nucleosomes/metabolism , Animals , Chromatin Assembly and Disassembly/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...