Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Res ; 260: 119629, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39025349

ABSTRACT

From the beginning of May 2023 to the end of August 2023, the Northern Hemisphere experienced significant wildfire activity with the most widespread fires occurring in Canada. Forest fires in Canada destroyed more than 15.6 million hectares of forests. These wildfires worsened air quality across the region and other parts of the world. The smoke reached southern Europe by the end of June 2023. To better understand the consequences of such forest fires far from the site of origin, aerosol optical, microphysical and radiative properties were analyzed during this event for southern Europe using data from the Visible Infrared Imaging Radiometer Suite (VIIRS), TROPOspheric Monitoring Instrument (TROPOMI), and Aerosol Robotic Network (AERONET). TROPOMI aerosol index (AI) and the carbon monoxide (CO) product confirm that the smoke originated directly from these forest fires. AERONET data from the El Arenosillo site in southern Spain showed maximum aerosol optical depth (AOD) values on June 27 reached 2.36. Data on Angstrom Exponent (AE), aerosol volume size distribution (VSD), single scattering albedo (SSA), fine mode fraction (FMF), volume particle concentration, effective radius (REff), absorption AOD (AAOD), extinction AE (EAE) and absorption AE (AAE) showed that fine-mode particles with carbonaceous aerosols contribution predominated in the atmosphere above the El Arenosillo site. Direct aerosol radiative forcing (DARF) at the top (DARFTOA) and bottom of atmosphere (DARFBOA) were -103.1 and -198.93 Wm-2, respectively. The atmospheric aerosol radiative forcing (DARFATM) was found to be 95.83 Wm-2 and with a heating rate 2.69 K day-1, which indicates the resulting warming of the atmosphere.


Subject(s)
Aerosols , Forests , Wildfires , Aerosols/analysis , Canada , Environmental Monitoring/methods , Air Pollutants/analysis , Europe , Smoke/analysis
2.
Sci Total Environ ; 944: 173895, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38862038

ABSTRACT

In the context of climate change, it is crucial to examine the contributions of leading countries in greenhouse gas (GHG) emissions. This research provides an overview of global GHG emissions from 1970 to 2022 for the world's most polluting countries: the United States, China, India, Russia, Brazil, Indonesia, Japan, Iran, Mexico, and Saudi Arabia. These countries collectively account for approximately 64% of GHG emissions. The aim is to understand the impact of various economic sectors, such as industry, energy, agriculture, and transportation, on overall emissions. The analysis highlights the disparity in per capita emissions, with smaller but major oil-producing countries in the Persian Gulf, such as Qatar and the United Arab Emirates, exhibiting high per capita emission levels, while more populated countries like the United States and South Korea show lower per capita values but significant total emission volumes. The study suggests that transitioning to renewable energy, improving energy efficiency in industry, promoting sustainable agriculture, reforestation, and electrifying transportation are key methods to achieve United Nations Sustainable Development Goals (UN SDG). Recommendations include encouraging technological innovations, implementing stringent government regulations and standards, and garnering active support for GHG reduction programs from governments, financial institutions, and the business community. The urgency is emphasized for global efforts to combat climate change for ensuring a sustainable future.

3.
Sci Total Environ ; 935: 173359, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38768722

ABSTRACT

An in-depth analysis of the role of greenhouse gases (GHGs) in climate change is examined here along with their diverse sources, including the combustion of fossil fuels, agriculture, and industrial processes. Key GHG components such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are considered, along with data on emissions across various economic sectors. The consequences of climate change are also highlighted, ranging from more frequent and intense extreme weather events to rising sea levels and impacts on ecosystems and human health. The industrial revolution and unrestricted use of fossil fuels are key factors leading to an increase in GHG concentrations in the atmosphere. Global efforts to reduce emissions are considered, starting with the 1997 Kyoto Protocol and culminating in the 2015 Paris Agreement. The limited effectiveness of early initiatives is underscored, emphasizing the significant importance of the Paris Agreement that provides a global framework for establishing goals to reduce GHG emissions by country. The Green Climate Fund and other international financial mechanisms are also considered as essential tools for financing sustainable projects in developing countries. The global community faces the challenge and necessity for more ambitious efforts to achieve the set goals for reducing GHG emissions. Successful strategies are examined by Sweden, Costa Rica, and Denmark to achieve zero GHG emissions that integrate renewable energy sources and technologies. The importance of global cooperation for creating a sustainable future is also emphasized.

4.
Sci Total Environ ; 898: 165569, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37459985

ABSTRACT

Of the >17,943 thousand barrels per calendar day (bbl/d) of oil refining capacity located in the US, the Petroleum Administration for Defense District 3 (PADD-3) region has the largest number of refineries and accounts for >53 % (or 9607 tbbl/d) of all US oil refining capacity. Processing facilities in this area are mainly located on the Gulf of Mexico coast in Texas and Louisiana. This study selected a sub-region for analysis within the Mississippi River delta in the state of Louisiana between the cities of New Orleans and Baton Rouge. This region is characterized by intensive industrial activity connected with oil refining and related activities. The TROPOspheric Monitoring Instrument (TROPOMI) detected highly localized NO2 vertical column densities (VCDs) over the two largest US refineries in Baton Rouge (503,000 bbl/d) and Garyville (578,000 bbl/d). TROPOMI NO2 VCD over these stations were 100 µmol/m2 and 80 µmol/m2, respectively. A high correlation coefficient (r = 0.65, p < 0.05) was also found between TROPOMI NO2 and population density. Data from the National Emissions Inventory (NEI) showed high NOx emissions from refineries and other industries including coal-fired power generation, chemical, and aluminum processing plants. The results of the NO2 analysis are of practical interest for a comparative assessment of air pollution, as well as for the exchange of best practices in the field of low-waste fuel combustion technologies.

5.
Sci Total Environ ; 849: 157827, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35944626

ABSTRACT

The eruption of the Cumbre Vieja volcano on the island of La Palma (Canary Islands, Spain) began on September 19, 2021 and ended on December 13, 2021. It lasted continuously for 85 days with short periods of calm when lava did not exit the cone of the volcano. Vast amounts of volcanic material, including ash and gases, were emitted into the environment. This research focuses on these emissions. The main objective is to use available open-source data to examine the impact on regional and local air quality. Data from the following sources were used: 1) Copernicus Atmosphere Monitoring Service (CAMS) data was used to track the transfer of volcanic SO2 in the troposphere in early October over long distances from the source of the eruption, including Western and Eastern Europe, across the Atlantic Ocean and the Caribbean; 2) Data from ground monitoring stations measured the concentrations of SO2 and PM10 near the source; 3) AErosol RObotic NETwork (AERONET) data from the La Palma station that showed high Aerosol Optical Depth (AOD) values (over 0.4) during the active phase of emissions on September 24 and 28, as well as on October 3; 4) Ångström Exponent (AE) values indicated the presence of particles of different sizes. On September 24, high AE values (>1.5), showed the presence of fine-mode fraction scattering aerosols such as sulfates; 5) Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data additionally confirmed the presence of sulfate and dust aerosols in the atmosphere over the region. However, the influence of Saharan dust on the atmosphere of the entire region could not be excluded. This research helps forecast air pollution resulting from large-scale volcanic eruptions and associated health risks to humans.


Subject(s)
Air Pollutants , Air Pollution , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Dust/analysis , Environmental Monitoring/methods , Gases , Humans , Spain , Sulfates , Volcanic Eruptions
6.
Sci Total Environ ; 826: 154103, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35218845

ABSTRACT

The wildfires of August and September 2020 in the western part of the United States were characterized by an unparalleled duration and wide geographical coverage. A particular consequence of massive wildfires includes serious health effects due to short and long-term exposure to poor air quality. Using a variety of data sources including aerosol optical depth (AOD) and ultraviolet aerosol index (UVAI), obtained with the Moderate-Resolution Imaging Spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC) and Tropospheric Monitoring Instrument (TROPOMI), combined with meteorological information from the European Center for Medium-Range Weather Forecasts (ECMWF) and other supporting data, the impact of wildfires on air quality is examined in the three western US states, California, Oregon, and Washington, and areas to the east. The results show that smoke aerosols not only led to a significant deterioration in air quality in these states but also affected all other states, Canada, and surrounding ocean areas. The wildfires increased the average daily surface concentration of PM2.5 posing significant health risks, especially for vulnerable populations. Large amounts of black carbon (BC) aerosols were emitted into the atmosphere. AOD and UVAI exceeded 1 and 2 over most of the country. In parts of the three western states, those values reached 3.7 and 6.6, respectively. Moreover, a reanalysis based on MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, version 2) showed that the maximum values of BC surface mass concentration during the wildfires were about 370 µg/m3. These various indicators provide a better understanding of the extent of environmental and atmospheric degradation associated with these forest fires.


Subject(s)
Air Pollutants , Air Pollution , Wildfires , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Retrospective Studies , Soot/analysis , United States
7.
Photosynth Res ; 79(2): 149-59, 2004 Feb.
Article in English | MEDLINE | ID: mdl-16228389

ABSTRACT

Plants can change the size of their light harvesting complexes in response to growth at different light intensities. Although these changes are small compared to those observed in algae, their conservation in many plant species suggest they play an important role in photoacclimation. A polyclonal antibody to the C-terminus of the Arabidopsis thaliana chlorophyllide a oxygenase (CAO) protein was used to determine if CAO protein levels change under three conditions which perturb chlorophyll levels. These conditions were: (1) transfer to shaded light intensity; (2) limited chlorophyll synthesis, and (3) during photoinhibition. Transfer of wild-type plants from moderate to shaded light intensity resulted in a slight reduction in the Chl a/b ratio, and increases in both CAO and Lhcb1 mRNA levels as well as CAO protein levels. CAO protein levels were also measured in the cch1 mutant, a P642L missense mutation in the H subunit of Mg-chelatase. This mutant has reduced total Chl levels and an increased Chl a/b ratio when transferred to moderate light intensity. After transfer to moderate light intensity, CAO mRNA levels decreased in the cch1 mutant, and a concomitant decrease in CAO protein levels was also observed. Measurements of tetrapyrrole intermediates suggested that decreased Chl synthesis in the cch1 mutant was not a result of increased feedback inhibition at higher light intensity. When wild-type plants were exposed to photoinhibitory light intensity for 3 h, total Chl levels decreased and both CAO mRNA and CAO protein levels were also reduced. These results indicate that CAO protein levels correlate with CAO mRNA levels, and suggest that changes in Chl b levels in vascular plants, are regulated, in part, at the CAO mRNA level.

8.
Photosynth Res ; 71(3): 185-94, 2002.
Article in English | MEDLINE | ID: mdl-16228131

ABSTRACT

Tetrapyrroles are the structural backbone of chlorophyll and heme, and are essential for primary photochemistry, light harvesting, and electron transport. The biochemistry of their synthesis has been studied extensively, and it has been suggested that some of the tetrapyrrole biochemical intermediates can affect nuclear gene expression. In this review, tetrapyrrole biosynthesis, which occurs in the chloroplast, and its regulation will be covered. An analysis of the intracellular location of tetrapyrrole intermediates will also be included. The focus will be on tetrapyrrole intermediates that have been suggested to affect gene expression. These include Mg-protoporphyrin IX and Mg-protoporphyrin IX monomethyl ester. Recent evidence also suggests a specific signaling role for the H subunit of Mg-chelatase, an enzyme that catalyzes the insertion of Mg into the tetrapyrrole ring. Since gene expression studies have been done in plants and green algae, our discussion will be limited to these organisms.

SELECTION OF CITATIONS
SEARCH DETAIL