Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(8): 2481-2487, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38373326

ABSTRACT

Comprehending the interaction between geometry and magnetism in three-dimensional (3D) nanostructures is important to understand the fundamental physics of domain wall (DW) formation and pinning. Here, we use focused-electron-beam-induced deposition to fabricate magnetic nanohelices with increasing helical curvature with height. Using electron tomography and Lorentz transmission electron microscopy, we reconstruct the 3D structure and magnetization of the nanohelices. The surface curvature, helical curvature, and torsion of the nanohelices are then quantified from the tomographic reconstructions. Furthermore, by using the experimental 3D reconstructions as inputs for micromagnetic simulations, we can reveal the influence of surface and helical curvature on the magnetic reversal mechanism. Hence, we can directly correlate the magnetic behavior of a 3D nanohelix to its experimental structure. These results demonstrate how the control of geometry in nanohelices can be utilized in the stabilization of DWs and control of the response of the nanostructure to applied magnetic fields.

2.
Adv Mater ; 36(24): e2311949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38306214

ABSTRACT

Generation and control of topological spin textures constitutes one of the most exciting challenges of modern spintronics given their potential applications in information storage technologies. Of particular interest are magnetic insulators, which due to low damping, absence of Joule heating and reduced dissipation can provide energy-efficient spin-textures platform. Here, it is demonstrated that the interplay between sample thickness, external magnetic fields, and optical excitations can generate a prolific paramount of spin textures, and their coexistence in insulating CrBr3 van der Waals (vdW) ferromagnets. Using high-resolution magnetic force microscopy and large-scale micromagnetic simulation methods, the existence of a large region in T-B phase diagram is demonstrated where different stripe domains, skyrmion crystals, and magnetic domains exist and can be intrinsically selected or transformed to each-other via a phase-switch mechanism. Lorentz transmission electron microscopy unveils the mixed chirality of the magnetic textures that are of Bloch-type at given conditions but can be further manipulated into Néel-type or hybrid-type via thickness-engineering. The topological phase transformation between the different magnetic objects can be further inspected by standard photoluminescence optical probes resolved by circular polarization indicative of an existence of exciton-skyrmion coupling mechanism. The findings identify vdW magnetic insulators as a promising framework of materials for the manipulation and generation of highly ordered skyrmion lattices relevant for device integration at the atomic level.

3.
ACS Nano ; 18(5): 4216-4228, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38262067

ABSTRACT

Fe5-xGeTe2 is a promising two-dimensional (2D) van der Waals (vdW) magnet for practical applications, given its magnetic properties. These include Curie temperatures above room temperature, and topological spin textures─TST (both merons and skyrmions), responsible for a pronounced anomalous Hall effect (AHE) and its topological counterpart (THE), which can be harvested for spintronics. Here, we show that both the AHE and THE can be amplified considerably by just adjusting the thickness of exfoliated Fe5-xGeTe2, with THE becoming observable even in zero magnetic field due to a field-induced unbalance in topological charges. Using a complementary suite of techniques, including electronic transport, Lorentz transmission electron microscopy, and micromagnetic simulations, we reveal the emergence of substantial coercive fields upon exfoliation, which are absent in the bulk, implying thickness-dependent magnetic interactions that affect the TST. We detected a "magic" thickness t ≈ 30 nm where the formation of TST is maximized, inducing large magnitudes for the topological charge density (∼6.45 × 1020 cm-2), and the concomitant anomalous (ρxyA,max ≃22.6 µΩ cm) and topological (ρxyu,T 1≃5 µΩ cm) Hall resistivities at T ≈ 120 K. These values for ρxyA,max and ρxyu,T are higher than those found in magnetic topological insulators and, so far, the largest reported for 2D magnets. The hitherto unobserved THE under zero magnetic field could provide a platform for the writing and electrical detection of TST aiming at energy-efficient devices based on vdW ferromagnets.

SELECTION OF CITATIONS
SEARCH DETAIL