Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Immunity ; 57(7): 1549-1566.e8, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38776917

ABSTRACT

The activities, ontogeny, and mechanisms of lineage expansion of eosinophils are less well resolved than those of other immune cells, despite the use of biological therapies targeting the eosinophilia-promoting cytokine interleukin (IL)-5 or its receptor, IL-5Rα. We combined single-cell proteomics and transcriptomics and generated transgenic IL-5Rα reporter mice to revisit eosinophilopoiesis. We reconciled human and murine eosinophilopoiesis and provided extensive cell-surface immunophenotyping and transcriptomes at different stages along the continuum of eosinophil maturation. We used these resources to show that IL-5 promoted eosinophil-lineage expansion via transit amplification, while its deletion or neutralization did not compromise eosinophil maturation. Informed from our resources, we also showed that interferon response factor-8, considered an essential promoter of myelopoiesis, was not intrinsically required for eosinophilopoiesis. This work hence provides resources, methods, and insights for understanding eosinophil ontogeny, the effects of current precision therapeutics, and the regulation of eosinophil development and numbers in health and disease.


Subject(s)
Cell Lineage , Eosinophils , Interleukin-5 , Mice, Transgenic , Proteomics , Single-Cell Analysis , Transcriptome , Eosinophils/immunology , Eosinophils/metabolism , Animals , Interleukin-5/metabolism , Interleukin-5/genetics , Humans , Mice , Proteomics/methods , Single-Cell Analysis/methods , Cell Differentiation/immunology , Mice, Inbred C57BL , Gene Expression Profiling/methods , Interleukin-5 Receptor alpha Subunit/metabolism , Interleukin-5 Receptor alpha Subunit/genetics , Myelopoiesis/genetics , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Mice, Knockout
2.
Trends Parasitol ; 39(5): 358-372, 2023 05.
Article in English | MEDLINE | ID: mdl-36935340

ABSTRACT

Helminths are parasitic worms that coevolve with their host, usually resulting in long-term persistence through modulating host immunity. The multifarious mechanisms altering the immune system induced by helminths have significant implications on the control of coinfecting pathogens such as viruses. Here, we explore the recent literature to highlight the main immune alterations and mechanisms that affect the control of viral coinfection. Insights from these mechanisms are valuable in the understanding of clinical observations in helminth-prevalent areas and in the design of new therapeutic and vaccination strategies to control viral diseases.


Subject(s)
Coinfection , Helminthiasis , Helminths , Virus Diseases , Viruses , Animals , Immune System , Virus Diseases/complications
3.
J Infect Dis ; 226(10): 1842-1851, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36052609

ABSTRACT

Incidence of visceral leishmaniasis (VL) in the Indian subcontinent (ISC) has declined by more than 95% since initiation of the elimination program in 2005. As the ISC transitions to the postelimination surveillance phase, an accurate measurement of human-vector contact is needed to assure long-term success. To develop this tool, we identified PagSP02 and PagSP06 from saliva of Phlebotomus argentipes, the vector of Leishmania donovani in the ISC, as immunodominant proteins in humans. We also established the absence of cross-reactivity with Phlebotomus papatasi saliva, the only other human-biting sand fly in the ISC. Importantly, by combining recombinant rPagSP02 and rPagSP06 we achieved greater antibody recognition and specificity than single salivary proteins. The receiver operating characteristics curve for rPagSP02 + rPagSP06 predicts exposure to Ph. argentipes bites with 90% specificity and 87% sensitivity compared to negative control sera (P >.0001). Overall, rPagSP02 + rPagSP06 provides an effective surveillance tool for monitoring vector control efforts after VL elimination.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Phlebotomus , Animals , Humans , Leishmaniasis, Visceral/epidemiology , Leishmania donovani/genetics , Salivary Proteins and Peptides , Biomarkers , India/epidemiology
4.
EMBO J ; 41(18): e109353, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35920020

ABSTRACT

Macrophage polarization is a process whereby macrophages acquire distinct effector states (M1 or M2) to carry out multiple and sometimes opposite functions. We show here that translational reprogramming occurs during macrophage polarization and that this relies on the Elongator complex subunit Elp3, an enzyme that modifies the wobble uridine base U34 in cytosolic tRNAs. Elp3 expression is downregulated by classical M1-activating signals in myeloid cells, where it limits the production of pro-inflammatory cytokines via FoxO1 phosphorylation, and attenuates experimental colitis in mice. In contrast, alternative M2-activating signals upregulate Elp3 expression through a PI3K- and STAT6-dependent signaling pathway. The metabolic reprogramming linked to M2 macrophage polarization relies on Elp3 and the translation of multiple candidates, including the mitochondrial ribosome large subunit proteins Mrpl3, Mrpl13, and Mrpl47. By promoting translation of its activator Ric8b in a codon-dependent manner, Elp3 also regulates mTORC2 activation. Elp3 expression in myeloid cells further promotes Wnt-driven tumor initiation in the intestine by maintaining a pool of tumor-associated macrophages exhibiting M2 features. Collectively, our data establish a functional link between tRNA modifications, mTORC2 activation, and macrophage polarization.


Subject(s)
Histone Acetyltransferases , Macrophage Activation , Signal Transduction , Animals , Codon/metabolism , Histone Acetyltransferases/genetics , Macrophage Activation/genetics , Macrophages/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL