Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biomimetics (Basel) ; 9(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38248622

ABSTRACT

In the field of three-dimensional object design and fabrication, this paper explores the transformative potential at the intersection of biomaterials, biopolymers, and additive manufacturing. Drawing inspiration from the intricate designs found in the natural world, this study contributes to the evolving landscape of manufacturing and design paradigms. Biomimicry, rooted in emulating nature's sophisticated solutions, serves as the foundational framework for developing materials endowed with remarkable characteristics, including adaptability, responsiveness, and self-transformation. These advanced engineered biomimetic materials, featuring attributes such as shape memory and self-healing properties, undergo rigorous synthesis and characterization procedures, with the overarching goal of seamless integration into the field of additive manufacturing. The resulting synergy between advanced manufacturing techniques and nature-inspired materials promises to revolutionize the production of objects capable of dynamic responses to environmental stimuli. Extending beyond the confines of laboratory experimentation, these self-transforming objects hold significant potential across diverse industries, showcasing innovative applications with profound implications for object design and fabrication. Through the reduction of waste generation, minimization of energy consumption, and the reduction of environmental footprint, the integration of biomaterials, biopolymers, and additive manufacturing signifies a pivotal step towards fostering ecologically conscious design and manufacturing practices. Within this context, inanimate three-dimensional objects will possess the ability to transcend their static nature and emerge as dynamic entities capable of evolution, self-repair, and adaptive responses in harmony with their surroundings. The confluence of biomimicry and additive manufacturing techniques establishes a seminal precedent for a profound reconfiguration of contemporary approaches to design, manufacturing, and ecological stewardship, thereby decisively shaping a more resilient and innovative global milieu.

2.
Nanomaterials (Basel) ; 13(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37836337

ABSTRACT

Presently, the separation of oil and water through functional membranes inevitably entails either inefficient gravity-driven processes or energy-intensive vacuum pressure mechanisms. This study introduces an innovative photothermal evaporator that uses solar energy to drive oil-water separation while concurrently facilitating the detection of Fe3+ in wastewater. First, by alkali delignification, small holes were formed on the side wall of the large size tubular channel in the direction of wood growth. Subsequently, superhydrophilic SiO2 nanoparticles were in situ assembled onto the sidewalls of the tubular channels. Finally, carbon quantum dots were deposited by spin-coating on the surface of the evaporator, paralleling the growth direction of the wood. During the photothermal evaporation process, the tubular channels with small holes in the side wall parallel the bulk water, which not only ensures the effective water supply to the photothermal surface but also reduces the heat loss caused by water reflux on the photothermal surface. The superhydrophilic SiO2 nanoparticles confer both hydrophilic and oleophobic properties to the evaporator, preventing the accumulation of minute oil droplets within the device and achieving sustained and stable oil-water separation over extended periods. These carbon quantum dots exhibit capabilities for both photothermal conversion and fluorescence transmission. This photothermal evaporator achieves an evaporation rate as high as 2.3 kg m-2 h-1 in the oil-water separation process, and it has the ability to detect Fe3+ concentrations in wastewater as low as 10-9 M.

3.
Biomimetics (Basel) ; 8(5)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37754143

ABSTRACT

High-strength grout is specified to increase the bond between grout and bar in grouted connections and to ensure that the forces in the bars can be transferred to the surrounding material accordingly. Although polymer grout is fast setting and rapid in strength development, the use of polymer mortar in grouted connections is still limited because of the lack of information and familiarity practitioners have regarding the product. The goal of this work is to investigate the mechanical characteristics and performance of polyester grout containing fly ash that can be used as an infill material for grouted connections. This study focused on the composition of polymer grout, which typically consists of a binder, hardener, and filler. In this particular case, the binder was made of unsaturated polyester resin and hardener, while the filler was fine sand. The aim of the research was to investigate the potential benefits of incorporating fly ash as an additional filler in polymer resin grout and examine the mechanical properties of polymer resin grout. To this end, varying amounts of fly ash were added to the mix, ranging from 0% to 32% of the total filler by volume, with a fixed polymer content of 40%. The performance of the resulting grout was evaluated through flowability, compression, and splitting tensile tests. The results of the experiments showed that, at a fly ash volume of 28%, the combination of fine sand and fly ash led to an improvement in grout strength; specifically, at this volume of fly ash, the compressive and tensile strengths increased by 24.7% and 124%, respectively, compared to the control mix. However, beyond a fly ash volume of 28%, the mechanical properties of the grout started to deteriorate. Due its superior properties in terms of compressive and flexural strengths over all examined mixes, the PRG-40-28 mix is ideal for use in the infill material for mechanical connections.

4.
Materials (Basel) ; 16(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37763488

ABSTRACT

The emergence of additive manufacturing technologies has brought about a significant transformation in several industries. Among these technologies, Fused Deposition Modeling/Fused Filament Fabrication (FDM/FFF) 3D printing has gained prominence as a rapid prototyping and small-scale production technique. The potential of FDM/FFF for applications that require improved mechanical, thermal, and electrical properties has been restricted due to the limited range of materials that are suitable for this process. This study explores the integration of various reinforcements, including carbon fibers, glass fibers, and nanoparticles, into the polymer matrix of FDM/FFF filaments. The utilization of advanced materials for reinforcing the filaments has led to the enhancement in mechanical strength, stiffness, and toughness of the 3D-printed parts in comparison to their pure polymer counterparts. Furthermore, the incorporation of fillers facilitates improved thermal conductivity, electrical conductivity, and flame retardancy, thereby broadening the scope of potential applications for FDM/FFF 3D-printed components. Additionally, the article underscores the difficulties linked with the utilization of filled filaments in FDM/FFF 3D printing, including but not limited to filament extrusion stability, nozzle clogging, and interfacial adhesion between the reinforcement and matrix. Ultimately, a variety of pragmatic implementations are showcased, wherein filled filaments have exhibited noteworthy benefits in comparison to standard FDM/FFF raw materials. The aforementioned applications encompass a wide range of industries, such as aerospace, automotive, medical, electronics, and tooling. The article explores the possibility of future progress and the incorporation of innovative reinforcement materials. It presents a plan for the ongoing growth and application of advanced composite materials in FDM/FFF 3D printing.

5.
Membranes (Basel) ; 13(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37505014

ABSTRACT

When the typical solar-driven hydrogel water evaporator treats the organic sewage, the organic pollutants will be accumulated in the evaporator and affect the evaporation performance. This issue is resolved by using silver-disulfide bonding to fix the silver oxide/silver (Ag2O/Ag) nanoparticles inside the polyacrylamide-acrylic acid hydrogel, resulting in the photocatalytic degradation of methyl orange and solar-driven water evaporation. Ag2O/Ag nanoparticles are a solar-thermal conversion material used to replace the traditional carbon material. On the one hand, the heterojunction structure of Ag2O/Ag enhances the separation ability of the photogenerated carriers, thereby increasing the photocatalytic efficiency. On the other hand, the surface of the nanoparticles is grafted with N, N'-bis(acryloyl) cystamine and becomes the crosslinking agent which is fixed in the hydrogel. Meanwhile, the inverted pyramid structure can be built at the surface of the hydrogel by soft imprinting technology. This kind of structure has excellent light trapping performance, which can increase the efficiency of Ag2O/Ag photocatalysis. Furthermore, the dynamic reversible coordination effect between Fe3+ and carboxyl realizes the self-healing capability of the hydrogel. Here are the properties of hydrogel: the fracture stress is 0.35 MPa, the fracture elongation is 1320%, the evaporation rate is 1.2 kg·m-2·h-1, and the rate of the photocatalytic degradation of methyl orange is 96% in 3 h. This self-healing hydrogel membrane provides a strategy to steadily get clean water from organic sewage.

6.
Materials (Basel) ; 16(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37241374

ABSTRACT

The photoluminescence of modified spiropyran on solid surfaces is poor, and the fluorescence intensity of its MC form is weak, which affects its application in the field of sensing. In this work, a PMMA layer containing Au nanoparticles and a spiropyran monomolecular layer are coated on the surface of a PDMS substrate with inverted micro-pyramids successively by means of interface assembly and soft lithography, and the overall structure is similar to insect compound eyes. The anti-reflection effect of the bioinspired structure, the SPR (surface plasmon resonance) effect of the Au nanoparticles and the anti-NRET (non-radiation energy transfer) effect of the PMMA isolation layer raise the fluorescence enhancement factor of the composite substrate vs. the surface MC form of spiropyran to 5.06. In the process of metal ion detection, the composite substrate can achieve both colorimetric and fluorescence response, and the detection limit for Zn2+ can reach 0.281 µM. However, at the same time, the lack of the ability to recognize specific metal ions is expected to be further improved by the modification of spiropyran.

7.
Nanomaterials (Basel) ; 13(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37110885

ABSTRACT

In conventional photo-thermal-electric conversion systems, the photo-thermal conversion module is coupled to a thermoelectric conversion module. However, the physical contact interface between the modules causes serious energy loss. In order to solve this problem, a novel photo-thermal-electric conversion system with an integrated support material has been developed, with a photo-thermal conversion component at the top, an inside thermoelectric conversion component, and a cooling component at the bottom, surrounded by a water conduction component. The supporting materials of each part are polydimethylsiloxane (PDMS), and there is no apparent physical interface between each part. This integrated support material reduces the heat loss caused by the mechanically coupled interfaces in traditional components. In addition, the confined edge 2D water transport path effectively reduces the heat loss due to water convection. Under 1 sun irradiation, the water evaporation rate and open-circuit voltage of the integrated system reach 2.46 kg m-2 h-1 and 30 mV, respectively, and are nearly 1.4 times and 5.8 times higher than those of non-integrated systems.

8.
Nanomaterials (Basel) ; 12(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432388

ABSTRACT

In this paper, the micropyramid structure was transferred to the TiO2 substrate by soft imprinting. Then, the PPy nanobowls were assembled onto the surface of the TiO2 micropyramids through the induction of the PS template. Finally, a layer of Ag nanoparticles was deposited on the surface of PPy nanobowls to form a novel Ag nanoparticle/PPy nanobowl/TiO2 micropyramid SERS substrate. Its structure is similar to the bioinspired compound eyes. This substrate exhibited excellent antireflection, ultra-sensitivity, excellent uniformity, and recyclability. The concentration of R6G molecules can be detected as low as 10-9 mol/L, and the Raman enhancement factor can reach 3.4 × 105. In addition, the excellent catalytic degradation performance of the substrate ensures recyclability. This work proves that the micropyramid structure can be applied to other SERS materials besides silicon by the above methods, which broadens the selection range of composite SERS materials.

9.
Membranes (Basel) ; 12(9)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36135896

ABSTRACT

Dimpled particles are synthesized through the seeded polymerization of fluoroacrylate and styrene on swelled polystyrene spheres. The morphologies of the particles can be controlled by the polymerization temperature, the amount of solvent swelling the seeds or the ratio of the fluoroacrylate monomer over styrene. Golf-ball-like particles with many small dimples on their surfaces are obtained at low polymerization temperatures or with a small amount of solvent. Particles with a large single dimple are formed at higher polymerization temperatures, with larger solvent amounts or a higher ratio of fluoroacrylate over styrene. The morphology formation mechanism of these dimpled particles is proposed and the application of these particles in the fabrication of superhydrophobic coatings is demonstrated.

10.
Nanomaterials (Basel) ; 12(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36144914

ABSTRACT

This paper reports a novel method to fabricate a bio-inspired SERS substrate with low reflectivity, ultra-sensitivity, excellent uniformity, and recyclability. First, double layers of polystyrene spheres with different particle sizes were assembled on the surface of a silicon wafer to act as a moth-like template. Second, through the template sacrifice method, the TiO2 film with a three-dimensional moth-like eye structure was induced by the double-layer polystyrene spheres in the previous step, and its microscopic morphology showed a high degree of order. Finally, Ag nanoparticles were assembled on the TiO2 film to form a bio-inspired SERS substrate. This ordered bio-inspired structure can not only reduce reflection, but also reinforce the uniformity of hotspot density, which helps to improve the sensitivity and uniformity of the Raman signal. This bio-inspired SERS substrate can detect R6G molecules at a concentration as low as 1.0 × 10-10 mol/L, and its enhancement factor (EF) can reach 6.56 × 106. In addition, the composite of Ag and TiO2 can realize the photocatalytic degradation of R6G and then realize the recyclability of the SERS substrate.

11.
Nanomaterials (Basel) ; 12(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35269347

ABSTRACT

The traditional hydrophobic solarevaporator is generally obtained through the modification of alkyl or fluoroalkyl on the photothermal membrane. However, the modified groups can easily be oxidized in the long-term use process, resulting in the poor salt resistance and stability of photothermal membrane. In order to solve this problem, a simple polypyrrole/polyvinylidene fluoride membrane, consisting of an intrinsic hydrophobic support (polyvinylidene fluoride) and a photothermal material (polypyrrole), was fabricated by ultrasonically mixing and immersed precipitation. This photothermal membrane showed good self-floating ability in the process of water evaporation. In order to further improve the photothermal conversion efficiency, a micropyramid structure with antireflective ability was formed on the surface of membrane by template method. The micropyramids can enhance the absorption efficiency of incident light. The water evaporation rate reached 1.42 kg m-2 h-1 under 1 sun irradiation, and the photothermal conversion efficiency was 88.7%. The hydrophobic polyvinylidene fluoride ensures that NaCl cannot enter into membrane during the evaporation process of the brine, thus realizing the stability and salt resistance of polypyrrole/polyvinylidene fluoride in 3.5%wt and 10%wt NaCl solution.

12.
Biomimetics (Basel) ; 5(3)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32839383

ABSTRACT

For some decades, the scientific community has been looking for alternatives to the use of fossil fuels that allow for the planet's sustainable and environmentally-friendly development. To do this, attempts have been made to mimic some processes that occur in nature, among which the photosystem-II stands out, which allows water splitting operating with different steps to generate oxygen and hydrogen. This research presents promising results using synthetic catalysts, which try to simulate some natural processes, and which are based on Au@ZnO-graphene compounds. These catalysts were prepared by incorporating different amounts of gold nanoparticles (1 wt.%, 3 wt.%, 5 wt.%, 10 wt.%) and graphene (1 wt.%) on the surface of synthesized zinc oxide nanowires (ZnO NWs), and zinc oxide nanoparticles (ZnO NPs), along with a commercial form (commercial ZnO) for comparison purposes. The highest amount of hydrogen (1127 µmol/hg) was reported by ZnO NWs with a gold and graphene loadings of 10 wt.% and 1 wt.%, respectively, under irradiation at 400 nm. Quantities of 759 µmol/hg and 709 µmol/hg were obtained with catalysts based on ZnO NPs and commercial ZnO, respectively. The photocatalytic activity of all composites increased with respect to the bare semiconductors, being 2.5 times higher in ZnO NWs, 8.8 times higher for ZnO NPs, and 7.5 times higher for commercial ZnO. The high photocatalytic activity of the catalysts is attributed, mainly, to the synergism between the different amount of gold and graphene incorporated, and the surface area of the composites.

SELECTION OF CITATIONS
SEARCH DETAIL
...