Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Ann Clin Transl Neurol ; 10(3): 302-311, 2023 03.
Article in English | MEDLINE | ID: mdl-36728340

ABSTRACT

Across its clinical development program, ocrelizumab demonstrated efficacy in improving clinical outcomes in multiple sclerosis, including annualized relapse rates and confirmed disability progression. However, as with any new treatment, it was unclear how this efficacy would translate into real-world clinical practice. The objective of this study was to systematically collate the published real-world clinical effectiveness data for ocrelizumab in relapsing remitting multiple sclerosis and primary progressive multiple sclerosis. A search strategy was developed in MEDLINE and Embase to identify articles reporting real-world evidence in people with relapsing remitting multiple sclerosis or primary progressive multiple sclerosis receiving treatment with ocrelizumab. The search focused on English language articles only but was not limited by the country in which the study was conducted or the time frame of the study. Additional manual searches of relevant websites were also performed. Fifty-two studies were identified reporting relevant evidence. Real-world effectiveness data for ocrelizumab were consistently favorable, with reductions in relapse rate and disease progression rates similar to those reported in the OPERA I/OPERA II and ORATORIO clinical trials, including in studies with more diverse patient populations not well represented in the pivotal trials. Although direct comparisons are confounded by lack of randomization of treatments, outcomes reported suggest that ocrelizumab has a similar or greater efficacy than other therapy options. Initial real-world effectiveness data for ocrelizumab appear favorable and consistent with results reported in clinical trials, providing clinicians with an efficacious option to treat patients with multiple sclerosis.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Multiple Sclerosis, Chronic Progressive/drug therapy , Recurrence
2.
Sci Rep ; 9(1): 5120, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30914656

ABSTRACT

Loss of latexin (LXN) expression negatively correlates with the prognosis of several human cancers. Despite association with numerous processes including haematopoietic stem cell (HSC) fate, inflammation and tumour suppression, a clearly defined biological role for LXN is still lacking. Therefore, we sought to understand LXN expression and function in the normal and malignant prostate to assess its potential as a therapeutic target. Our data demonstrate that LXN is highly expressed in normal prostate luminal cells but downregulated in high Gleason grade cancers. LXN protein is both cytosolic and secreted by prostate cells and expression is directly and potently upregulated by all-trans retinoic acid (atRA). Whilst overexpression of LXN in prostate epithelial basal cells did not affect cell fate, LXN overexpression in the luminal cancer line LNCaP reduced plating efficiency. Transcriptome analysis revealed that LXN overexpression had no direct effects on gene expression but had significant indirect effects on important genes involved in both retinoid metabolism and IFN-associated inflammatory responses. These data highlight a potential role for LXN in retinoid signaling and inflammatory pathways. Investigating the effects of LXN on immune cell function in the tumour microenvironment (TME) may reveal how observed intratumoural loss of LXN affects the prognosis of many adenocarcinomas.


Subject(s)
Down-Regulation , Gene Expression Regulation, Neoplastic , Nerve Tissue Proteins/biosynthesis , Prostate/metabolism , Prostatic Neoplasms/metabolism , Tumor Suppressor Proteins/biosynthesis , Humans , Male , Nerve Tissue Proteins/genetics , PC-3 Cells , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Tumor Suppressor Proteins/genetics
3.
Nucleic Acids Res ; 47(8): 3937-3956, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30820548

ABSTRACT

RNA polymerase (pol) III occurs in two forms, containing either the POLR3G subunit or the related paralogue POLR3GL. Whereas POLR3GL is ubiquitous, POLR3G is enriched in undifferentiated cells. Depletion of POLR3G selectively triggers proliferative arrest and differentiation of prostate cancer cells, responses not elicited when POLR3GL is depleted. A small molecule pol III inhibitor can cause POLR3G depletion, induce similar differentiation and suppress proliferation and viability of cancer cells. This response involves control of the fate-determining factor NANOG by small RNAs derived from Alu short interspersed nuclear elements. Tumour initiating activity in vivo can be reduced by transient exposure to the pol III inhibitor. Untransformed prostate cells appear less sensitive than cancer cells to pol III depletion or inhibition, raising the possibility of a therapeutic window.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/drug effects , Prostatic Neoplasms/drug therapy , RNA Polymerase III/genetics , Small Molecule Libraries/pharmacology , Aged , Alu Elements/drug effects , Animals , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Endoplasmic Reticulum Chaperone BiP , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Male , Mice , Mice, Knockout , Middle Aged , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prostatectomy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Polymerase III/antagonists & inhibitors , RNA Polymerase III/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Xenograft Model Antitumor Assays
4.
Diabetes Obes Metab ; 19(8): 1078-1087, 2017 08.
Article in English | MEDLINE | ID: mdl-28206714

ABSTRACT

AIM: Small molecule activators of glucokinase (GKAs) have been explored extensively as potential anti-hyperglycaemic drugs for type 2 diabetes (T2D). Several GKAs were remarkably effective in lowering blood glucose during early therapy but then lost their glycaemic efficacy chronically during clinical trials. MATERIALS AND METHODS: We used rat hepatocytes to test the hypothesis that GKAs raise hepatocyte glucose 6-phosphate (G6P, the glucokinase product) and down-stream metabolites with consequent repression of the liver glucokinase gene ( Gck). We compared a GKA with metformin, the most widely prescribed drug for T2D. RESULTS: Treatment of hepatocytes with 25 mM glucose raised cell G6P, concomitantly with Gck repression and induction of G6pc (glucose 6-phosphatase) and Pklr (pyruvate kinase). A GKA mimicked high glucose by raising G6P and fructose-2,6-bisphosphate, a regulatory metabolite, causing a left-shift in glucose responsiveness on gene regulation. Fructose, like the GKA, repressed Gck but modestly induced G6pc. 2-Deoxyglucose, which is phosphorylated by glucokinase but not further metabolized caused Gck repression but not G6pc induction, implicating the glucokinase product in Gck repression. Metformin counteracted the effect of high glucose on the elevated G6P and fructose 2,6-bisphosphate and on Gck repression, recruitment of Mlx-ChREBP to the G6pc and Pklr promoters and induction of these genes. CONCLUSIONS: Elevation in hepatocyte G6P and downstream metabolites, with consequent liver Gck repression, is a potential contributing mechanism to the loss of GKA efficacy during chronic therapy. Cell metformin loads within the therapeutic range attenuate the effect of high glucose on G6P and on glucose-regulated gene expression.


Subject(s)
Enzyme Activators/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Glucokinase/metabolism , Hepatocytes/drug effects , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Thiazoles/pharmacology , Active Transport, Cell Nucleus/drug effects , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cells, Cultured , Diet, Western/adverse effects , Fructose/administration & dosage , Fructose/adverse effects , Fructosediphosphates/metabolism , Glucokinase/antagonists & inhibitors , Glucokinase/chemistry , Glucokinase/genetics , Glucose-6-Phosphatase/antagonists & inhibitors , Glucose-6-Phosphatase/chemistry , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , Glucose-6-Phosphate/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Hepatocytes/pathology , Male , Mice, Inbred C3H , Overweight/enzymology , Overweight/metabolism , Overweight/pathology , Promoter Regions, Genetic/drug effects , Pyruvate Kinase/antagonists & inhibitors , Pyruvate Kinase/chemistry , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Rats, Wistar
5.
BMC Cancer ; 15: 905, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26573593

ABSTRACT

BACKGROUND: BRF2 is a transcription factor required for synthesis of a small group of non-coding RNAs by RNA polymerase III. Overexpression of BRF2 can transform human mammary epithelial cells. In both breast and lung cancers, the BRF2 gene is amplified and overexpressed and may serve as an oncogenic driver. Furthermore, elevated BRF2 can be independently prognostic of unfavorable survival. Dietary soy isoflavones increase metastasis to lungs in a model of breast cancer and a recent study reported significantly increased cell proliferation in breast cancer patients who used soy supplementation. The soy isoflavone daidzein is a major food-derived phytoestrogen that is structurally similar to estrogen. The putative estrogenic effect of soy raises concern that high consumption of soy foods by breast cancer patients may increase tumor growth. METHODS: Expression of BRF2 RNA and protein was assayed in ER-positive or -negative human breast cancer cells after exposure to daidzein. We also measured mRNA stability, promoter methylation and response to the demethylating agent 5-azacytidine. In addition, expression was compared between mice fed diets enriched or deprived of isoflavones. RESULTS: We demonstrate that the soy isoflavone daidzein specifically stimulates expression of BRF2 in ER-positive breast cancer cells, as well as the related factor BRF1. Induction is accompanied by increased levels of non-coding RNAs that are regulated by BRF2 and BRF1. Daidzein treatment stabilizes BRF2 and BRF1 mRNAs and selectively decreases methylation of the BRF2 promoter. Functional significance of demethylation is supported by induction of BRF2 by the methyltransferase inhibitor 5-azacytidine. None of these effects are observed in an ER-negative breast cancer line, when tested in parallel with ER-positive breast cancer cells. In vivo relevance is suggested by the significantly elevated levels of BRF2 mRNA detected in female mice fed a high-isoflavone commercial diet. In striking contrast, BRF2 and BRF1 mRNA levels are suppressed in matched male mice fed the same isoflavone-enriched diet. CONCLUSIONS: The BRF2 gene that is implicated in cancer can be induced in human breast cancer cells by the isoflavone daidzein, through promoter demethylation and/or mRNA stabilization. Dietary isoflavones may also induce BRF2 in female mice, whereas the converse occurs in males.


Subject(s)
Breast Neoplasms/metabolism , Isoflavones/pharmacology , Neoplasm Proteins/metabolism , Phytoestrogens/pharmacology , Transcription Factor TFIIIB/metabolism , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , DNA Methylation/drug effects , Disease Models, Animal , Female , Humans , Male , Promoter Regions, Genetic/drug effects , Proto-Oncogene Mas , RNA, Messenger/metabolism , RNA, Neoplasm/metabolism , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIIIB/genetics
6.
Am J Physiol Endocrinol Metab ; 305(10): E1255-65, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24045866

ABSTRACT

Plasma levels of uric acid, the final product of purine degradation in humans, are elevated in metabolic syndrome and are strongly associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD). Hepatic and blood levels of purine metabolites (inosine, hypoxanthine, and xanthine) are also altered in pathophysiological states. We optimized a rat hepatocyte model to test the hypothesis that the production of uric acid by hepatocytes is a potential marker of compromised homeostasis of hepatocellular inorganic phosphate (Pi) and/or ATP. The basal rate of uric acid production from endogenous substrates in rat hepatocytes was comparable to that in human liver and was <10% of the maximum rate with saturating concentrations of purine substrates. It was marginally (~20%) decreased by insulin and increased by glucagon but was stimulated more than twofold by substrates (fructose and glycerol) that lower both cell ATP and Pi, and by inhibitors of mitochondrial respiration (complexes I, III, and V) that lower ATP but raise cell Pi. Clearance of inosine and its degradation to uric acid were also inhibited by cell Pi depletion. Analysis of gene expression in NAFLD biopsies showed an association between mRNA expression of GCKR, the glucokinase regulatory protein that is functionally linked to uric acid production, and mRNA expression of the phosphate transporters encoded by SLC17A1/3. Uric acid production by hepatocytes is a very sensitive index of ATP depletion irrespective of whether cell Pi is lowered or raised. This suggests that raised plasma uric acid may be a marker of compromised hepatic ATP homeostasis.


Subject(s)
Adenosine Triphosphate/metabolism , Hepatocytes/metabolism , Metabolic Diseases/metabolism , Uric Acid/metabolism , Animals , Biomarkers/metabolism , Cells, Cultured , Health Status Indicators , Hep G2 Cells , Homeostasis/physiology , Humans , Male , Metabolic Diseases/diagnosis , Mice , Mice, Inbred C3H , Rats , Rats, Wistar , Sensitivity and Specificity
7.
Mol Cell Biol ; 33(4): 725-38, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23207906

ABSTRACT

In the liver, a high glucose concentration activates transcription of genes encoding glucose 6-phosphatase and enzymes for glycolysis and lipogenesis by elevation in phosphorylated intermediates and recruitment of the transcription factor ChREBP (carbohydrate response element binding protein) and its partner, Mlx, to gene promoters. A proposed function for this mechanism is intracellular phosphate homeostasis. In extrahepatic tissues, MondoA, the paralog of ChREBP, partners with Mlx in transcriptional induction by glucose. We tested for glucose induction of regulatory proteins of the glycogenic pathway in hepatocytes and identified the glycogen-targeting proteins, G(L) and PTG (protein targeting to glycogen), as being encoded by Mlx-dependent glucose-inducible genes. PTG induction by glucose was MondoA dependent but ChREBP independent and was enhanced by forced elevation of fructose 2,6-bisphosphate and by additional xylitol-derived metabolites. It was counteracted by selective depletion of fructose 2,6-bisphosphate with a bisphosphatase-active kinase-deficient variant of phosphofructokinase 2/fructosebisphosphatase 2, which prevented translocation of MondoA to the nucleus and recruitment to the PTG promoter. We identify a novel role for MondoA in the liver and demonstrate that elevated fructose 2,6-bisphosphate is essential for recruitment of MondoA to the PTG promoter. Phosphometabolite activation of MondoA and ChREBP and their recruitment to target genes is consistent with a mechanism for gene regulation to maintain intracellular phosphate homeostasis.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Fructosediphosphates/metabolism , Glucose/metabolism , Glycogen/metabolism , Hepatocytes/metabolism , Animals , Carrier Proteins/genetics , Cell Line , Cells, Cultured , Gene Expression Regulation , Glycogen Synthase/metabolism , Intracellular Signaling Peptides and Proteins , Male , Promoter Regions, Genetic , Protein Transport , Rats , Rats, Wistar , Trans-Activators/metabolism
8.
Biochem J ; 443(1): 111-23, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22214556

ABSTRACT

Glucose metabolism in the liver activates the transcription of various genes encoding enzymes of glycolysis and lipogenesis and also G6pc (glucose-6-phosphatase). Allosteric mechanisms involving glucose 6-phosphate or xylulose 5-phosphate and covalent modification of ChREBP (carbohydrate-response element-binding protein) have been implicated in this mechanism. However, evidence supporting an essential role for a specific metabolite or pathway in hepatocytes remains equivocal. By using diverse substrates and inhibitors and a kinase-deficient bisphosphatase-active variant of the bifunctional enzyme PFK2/FBP2 (6-phosphofructo-2-kinase-fructose-2,6-bisphosphatase), we demonstrate an essential role for fructose 2,6-bisphosphate in the induction of G6pc and other ChREBP target genes by glucose. Selective depletion of fructose 2,6-bisphosphate inhibits glucose-induced recruitment of ChREBP to the G6pc promoter and also induction of G6pc by xylitol and gluconeogenic precursors. The requirement for fructose 2,6-bisphosphate for ChREBP recruitment to the promoter does not exclude the involvement of additional metabolites acting either co-ordinately or at downstream sites. Glucose raises fructose 2,6-bisphosphate levels in hepatocytes by reversing the phosphorylation of PFK2/FBP2 at Ser32, but also independently of Ser32 dephosphorylation. This supports a role for the bifunctional enzyme as the phosphometabolite sensor and for its product, fructose 2,6-bisphosphate, as the metabolic signal for substrate-regulated ChREBP-mediated expression of G6pc and other ChREBP target genes.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Fructosediphosphates/metabolism , Gene Expression Regulation , Glucose-6-Phosphatase/genetics , Glucose/physiology , Hepatocytes/metabolism , Active Transport, Cell Nucleus , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cells, Cultured , Deoxyglucose/pharmacology , Dihydroxyacetone/pharmacology , Glucose/metabolism , Glucose/pharmacology , Glucose-6-Phosphatase/metabolism , Glycolysis , Hepatocytes/enzymology , Hexosamines/metabolism , Male , Phosphofructokinase-2/metabolism , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Rats , Rats, Wistar , Xylitol/pharmacology
9.
Diabetes ; 61(1): 49-60, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22106156

ABSTRACT

Hepatic autonomic nerves regulate postprandial hepatic glucose uptake, but the signaling pathways remain unknown. We tested the hypothesis that serotonin (5-hydroxytryptamine [5-HT]) exerts stimulatory and inhibitory effects on hepatic glucose disposal. Ligands of diverse 5-HT receptors were used to identify signaling pathway(s) regulating glucose metabolism in hepatocytes. 5-HT had stimulatory and inhibitory effects on glycogen synthesis in hepatocytes mediated by 5-HT1/2A and 5-HT2B receptors, respectively. Agonists of 5-HT1/2A receptors lowered blood glucose and increased hepatic glycogen after oral glucose loading and also stimulated glycogen synthesis in freshly isolated hepatocytes with greater efficacy than 5-HT. This effect was blocked by olanzapine, an antagonist of 5-HT1/2A receptors. It was mediated by activation of phosphorylase phosphatase, inactivation of glycogen phosphorylase, and activation of glycogen synthase. Unlike insulin action, it was not associated with stimulation of glycolysis and was counteracted by cyclin-dependent kinase (cdk) inhibitors. A role for cdk5 was supported by adaptive changes in the coactivator protein p35 and by elevated glycogen synthesis during overexpression of p35/cdk5. These results support a novel mechanism for serotonin stimulation of hepatic glycogenesis involving cdk5. The opposing effects of serotonin, mediated by distinct 5-HT receptors, could explain why drugs targeting serotonin function can cause either diabetes or hypoglycemia in humans.


Subject(s)
Cyclin-Dependent Kinase 5/physiology , Liver Glycogen/biosynthesis , Serotonin/physiology , Animals , Cells, Cultured , Cyclin-Dependent Kinase 5/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Indoles/pharmacology , Liver/drug effects , Liver/metabolism , Male , Metabolic Networks and Pathways/drug effects , Pyridines/pharmacology , Pyrroles/pharmacology , Rats , Rats, Wistar , Receptors, Serotonin/metabolism , Receptors, Serotonin/physiology , Serotonin/pharmacology , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Tetrahydronaphthalenes/pharmacology
10.
Diabetes ; 60(12): 3110-20, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22013014

ABSTRACT

OBJECTIVE: The induction of hepatic glucose 6-phosphatase (G6pc) by glucose presents a paradox of glucose-induced glucose intolerance. We tested whether glucose regulation of liver gene expression is geared toward intracellular homeostasis. RESEARCH DESIGN AND METHODS: The effect of glucose-induced accumulation of phosphorylated intermediates on expression of glucokinase (Gck) and its regulator Gckr was determined in hepatocytes. Cell ATP and uric acid production were measured as indices of cell phosphate homeostasis. RESULTS: Accumulation of phosphorylated intermediates in hepatocytes incubated at elevated glucose induced rapid and inverse changes in Gck (repression) and Gckr (induction) mRNA concomitantly with induction of G6pc, but had slower effects on the Gckr-to-Gck protein ratio. Dynamic metabolic labeling in mice and liver proteome analysis confirmed that Gckr and Gck are low-turnover proteins. Involvement of Max-like protein X in glucose-mediated Gck-repression was confirmed by chromatin immunoprecipitation analysis. Elevation of the Gck-to-Gckr ratio in hepatocytes was associated with glucose-dependent ATP depletion and elevated urate production confirming compromised phosphate homeostasis. CONCLUSIONS: The lowering by glucose of the Gck-to-Gckr ratio provides a potential explanation for the impaired hepatic glucose uptake in diabetes. Elevated uric acid production at an elevated Gck-to-Gckr ratio supports a role for glucose regulation of gene expression in hepatic phosphate homeostasis.


Subject(s)
Glucokinase/metabolism , Glucose-6-Phosphatase/metabolism , Glucose/pharmacology , Liver/drug effects , Liver/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cells, Cultured , Chromatin Immunoprecipitation , Glucokinase/genetics , Glucose-6-Phosphatase/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Homeostasis/drug effects , Homeostasis/genetics , Intracellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred BALB C , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...