Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834787

ABSTRACT

The prognosis for patients with relapsed childhood acute lymphoblastic leukaemia (cALL) remains poor. The main reason for treatment failure is drug resistance, most commonly to glucocorticoids (GCs). The molecular differences between prednisolone-sensitive and -resistant lymphoblasts are not well-studied, thereby precluding the development of novel and targeted therapies. Therefore, the aim of this work was to elucidate at least some aspects of the molecular differences between matched pairs of GC-sensitive and -resistant cell lines. To address this, we carried out an integrated transcriptomic and metabolomic analysis, which revealed that lack of response to prednisolone may be underpinned by alterations in oxidative phosphorylation, glycolysis, amino acid, pyruvate and nucleotide biosynthesis, as well as activation of mTORC1 and MYC signalling, which are also known to control cell metabolism. In an attempt to explore the potential therapeutic effect of inhibiting one of the hits from our analysis, we targeted the glutamine-glutamate-α-ketoglutarate axis by three different strategies, all of which impaired mitochondrial respiration and ATP production and induced apoptosis. Thereby, we report that prednisolone resistance may be accompanied by considerable rewiring of transcriptional and biosynthesis programs. Among other druggable targets that were identified in this study, inhibition of glutamine metabolism presents a potential therapeutic approach in GC-sensitive, but more importantly, in GC-resistant cALL cells. Lastly, these findings may be clinically relevant in the context of relapse-in publicly available datasets, we found gene expression patterns suggesting that in vivo drug resistance is characterised by similar metabolic dysregulation to what we found in our in vitro model.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Prednisolone , Humans , Child , Prednisolone/pharmacology , Glutamine/pharmacology , Drug Resistance, Neoplasm/genetics , Glucocorticoids/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
2.
Br J Haematol ; 198(2): 338-348, 2022 07.
Article in English | MEDLINE | ID: mdl-35468223

ABSTRACT

Aberrant activity of the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR [PAM]) pathway, as well as suppressed retinoic acid signalling, contribute to enhanced proliferation and the differentiation blockade of immature myeloid cells in acute myeloid leukaemia (AML). Inhibition of the PAM pathway was shown to affect especially mixed-lineage leukaemia-rearranged AML. Here, we sought to test a combined strategy using small molecule inhibitors against members of the PAM signalling pathway in conjunction with all-trans retinoic acid (ATRA) to target a larger group of different AML subtypes. We find that ATRA treatment in combination with inhibition of PI3K (ZSTK474), mTOR (WYE132) or PI3K/mTOR (BEZ235, dactolisib) drastically reduces protein levels of the proto-oncogene MYC. In combination with BEZ235, ATRA treatment led to almost complete eradication of cellular MYC, G1 arrest, loss of clonal capacity and terminal granulocytic differentiation. We demonstrate that PAM inhibitor/ATRA treatment targets MYC via independent mechanisms. While inhibition of the PAM pathway causes MYC phosphorylation at threonine 58 via glycogen synthase kinase 3 beta and subsequent degradation, ATRA reduces its expression. Here, we present an approach using a combination of known drugs to synergistically reduce aberrant MYC levels, thereby effectively blocking proliferation and enabling differentiation in various AML subtypes.


Subject(s)
Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-akt , Cell Line, Tumor , Cell Proliferation , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases , Tretinoin/pharmacology , Tretinoin/therapeutic use
3.
Cancer Gene Ther ; 29(7): 940-950, 2022 07.
Article in English | MEDLINE | ID: mdl-34522028

ABSTRACT

Deregulated polyamine biosynthesis is emerging as a common feature of neuroblastoma and drugs targeting this metabolic pathway such as DFMO are in clinical and preclinical development. The polyamine analog verlindamycin inhibits the polyamine biosynthesis pathway enzymes SMOX and PAOX, as well as the histone demethylase LSD1. Based on our previous research in acute myeloid leukemia (AML), we reasoned verlindamycin may also unblock neuroblastoma differentiation when combined with all-trans-retinoic acid (ATRA). Indeed, co-treatment with verlindamycin and ATRA strongly induced differentiation regardless of MYCN status, but in MYCN-expressing cells, protein levels were strongly diminished. This process was not transcriptionally regulated but was due to increased degradation of MYCN protein, at least in part via ubiquitin-independent, proteasome-dependent destruction. Here we report that verlindamycin effectively induces the expression of functional tumor suppressor-antizyme via ribosomal frameshifting. Consistent with previous results describing the function of antizyme, we found that verlindamycin treatment led to the selective targeting of ornithine decarboxylase (the rate-limiting enzyme for polyamine biosynthesis) as well as key oncoproteins, such as cyclin D and Aurora A kinase. Retinoid-based multimodal differentiation therapy is one of the few interventions that extends relapse-free survival in MYCN-associated high-risk neuroblastoma and these results point toward the potential use of verlindamycin in this regimen.


Subject(s)
Biguanides , Neuroblastoma , Biguanides/therapeutic use , Humans , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/therapeutic use , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase/therapeutic use , Polyamines/metabolism , Polyamines/therapeutic use
4.
Front Oncol ; 11: 632181, 2021.
Article in English | MEDLINE | ID: mdl-33791218

ABSTRACT

Childhood acute lymphoblastic leukaemia (cALL) accounts for about one third of all paediatric malignancies making it the most common cancer in children. Alterations in tumour cell metabolism were first described nearly a century ago and have been acknowledged as one of the key characteristics of cancers including cALL. Two of the backbone chemotherapeutic agents in the treatment of this disease, Glucocorticoids and L-asparaginase, are exerting their anti-leukaemic effects through targeting cell metabolism. Even though risk stratification and treatment regimens have improved cure rates to nearly 90%, prognosis for relapsed children remains poor. Therefore, new therapeutic approaches are urgently required. Atovaquone is a well-tolerated drug used in the clinic mainly against malaria. Being a ubiquinone analogue, this drug inhibits co-enzyme Q10 of the electron transport chain (ETC) affecting oxidative phosphorylation and cell metabolism. In this study we tested the effect of Atovaquone on cALL cells in vitro. Pharmacologically relevant concentrations of the inhibitor could effectively target mitochondrial respiration in both cALL cell lines (REH and Sup-B15) and primary patient samples. We found that Atovaquone leads to a marked decrease in basal respiration and ATP levels, as well as reduced proliferation, cell cycle arrest, and induction of apoptosis. Importantly, we observed an enhanced anti-leukaemic effect when Atovaquone was combined with the standard chemotherapeutic Idarubicin, or with Prednisolone in an in vitro model of Glucocorticoid resistance. Repurposing of this clinically approved inhibitor renders further investigations, but also presents opportunities for fast-track trials as a single agent or in combination with standard chemotherapeutics.

5.
Int J Mol Sci ; 22(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807298

ABSTRACT

Cancer "stem cells" (CSCs) sustain the hierarchies of dividing cells that characterize cancer. The main causes of cancer-related mortality are metastatic disease and relapse, both of which originate primarily from CSCs, so their eradication may provide a bona fide curative strategy, though there maybe also the need to kill the bulk cancer cells. While classic anti-cancer chemotherapy is effective against the dividing progeny of CSCs, non-dividing or quiescent CSCs are often spared. Improved anti-cancer therapies therefore require approaches that target non-dividing CSCs, which must be underpinned by a better understanding of factors that permit these cells to maintain a stem cell-like state. During hematopoiesis, retinoic acid receptor (RAR) γ is selectively expressed by stem cells and their immediate progeny. It is overexpressed in, and is an oncogene for, many cancers including colorectal, renal and hepatocellular carcinoma, cholangiocarcinomas and some cases of acute myeloid leukemia that harbor RARγ fusion proteins. In vitro studies suggest that RARγ-selective and pan-RAR antagonists provoke the death of CSCs by necroptosis and point to antagonism of RARγ as a potential strategy to treat metastatic disease and relapse, and perhaps provide a cure for some cancers.


Subject(s)
Neoplastic Stem Cells/metabolism , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Cell Division/physiology , Humans , Neoplasms/metabolism , Neoplasms/therapy , Neoplastic Stem Cells/physiology , Oncogenes/genetics , Receptors, Retinoic Acid/antagonists & inhibitors , Receptors, Retinoic Acid/physiology , Retinoic Acid Receptor gamma
6.
Cancer Rep (Hoboken) ; 3(6): e1284, 2020 12.
Article in English | MEDLINE | ID: mdl-32881426

ABSTRACT

BACKGROUND: Prostate cancer (PC) tissue contains all-trans retinoic acid (ATRA) at a very low level (10-9 M), at least an order of magnitude lower than in adjacent normal healthy prostate cells or benign prostate hyperplasia. When this is coupled with deregulated expression of the intracellular lipid-binding proteins FABP5 and CRABP2 that is frequently found in PC, this is likely to result in the preferential delivery of ATRA to oncogenic PPARß/δ rather than retinoic acid receptors (RARs). There are three isotypes of RARs (RARα, RARß, and RARγ) and recent studies have revealed discrete physiological roles. For example, RARα and RARγ promote differentiation and self-renewal, respectively, which are critical for proper hematopoiesis. AIMS: We have previously shown that ATRA stimulates transactivation of RARγ at sub-nanomolar concentrations (EC50 0.24 nM), whereas an 80-fold higher concentration was required for RARα-mediated transactivation (EC50 19.3 nM). Additionally, we have shown that RAR pan-antagonists inhibit the growth of PC cells (at 16-34 nM). These findings, together with the low level of ATRA in PC, led us to hypothesize that RARγ plays a role in PC pathogenesis and that RARγ-selective antagonism may be an effective treatment. METHODS AND RESULTS: We found that concentrations of 10-9 M and below of ATRA promoted survival/proliferation and opposed adipogenic differentiation of human PC cell lines by a mechanism that involves RARγ. We also found that a RARγ-selective antagonist (AGN205728) potently induced mitochondria-dependent, but caspase-independent, cell death in PC cell lines. Furthermore, AGN205728 demonstrated synergism in killing PC cells in combination with cytotoxic chemotherapeutic agents. CONCLUSION: We suggest that the use of RARγ-selective antagonists may be effective in PC (and potentially other cancers), either as a single agent or in combination with cytotoxic chemotherapy.


Subject(s)
Prostatic Neoplasms/drug therapy , Receptors, Retinoic Acid/antagonists & inhibitors , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Male , Prostatic Neoplasms/pathology , Tretinoin/pharmacology , Retinoic Acid Receptor gamma
8.
Leukemia ; 33(11): 2628-2639, 2019 11.
Article in English | MEDLINE | ID: mdl-31576004

ABSTRACT

To date, only one subtype of acute myeloid leukemia (AML), acute promyelocytic leukemia (APL) can be effectively treated by differentiation therapy utilizing all-trans retinoic acid (ATRA). Non-APL AMLs are resistant to ATRA. Here we demonstrate that the acetyltransferase GCN5 contributes to ATRA resistance in non-APL AML via aberrant acetylation of histone 3 lysine 9 (H3K9ac) residues maintaining the expression of stemness and leukemia associated genes. We show that inhibition of GCN5 unlocks an ATRA-driven therapeutic response. This response is potentiated by coinhibition of the lysine demethylase LSD1, leading to differentiation in most non-APL AML. Induction of differentiation was not correlated to a specific AML subtype, cytogenetic, or mutational status. Our study shows a previously uncharacterized role of GCN5 in maintaining the immature state of leukemic blasts and identifies GCN5 as a therapeutic target in AML. The high efficacy of the combined epigenetic treatment with GCN5 and LSD1 inhibitors may enable the use of ATRA for differentiation therapy of non-APL AML. Furthermore, it supports a strategy of combined targeting of epigenetic factors to improve treatment, a concept potentially applicable for a broad range of malignancies.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Promyelocytic, Acute/drug therapy , Tretinoin/pharmacology , p300-CBP Transcription Factors/metabolism , Apoptosis , Bone Marrow/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Membrane/metabolism , Epigenesis, Genetic , Genotype , HEK293 Cells , HL-60 Cells , Histone Demethylases/antagonists & inhibitors , Histones/chemistry , Humans , Leukocytes, Mononuclear/cytology
9.
Int J Mol Sci ; 18(7)2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28696354

ABSTRACT

Here we report the case of a 30-year-old woman with relapsed acute myeloid leukemia (AML) who was treated with all-trans retinoic acid (ATRA) as part of investigational therapy (NCT02273102). The patient died from rapid disease progression following eight days of continuous treatment with ATRA. Karyotype analysis and RNA-Seq revealed the presence of a novel t(4;15)(q31;q22) reciprocal translocation involving the TMEM154 and RASGRF1 genes. Analysis of primary cells from the patient revealed the expression of TMEM154-RASGRF1 mRNA and the resulting fusion protein, but no expression of the reciprocal RASGRF1-TMEM154 fusion. Consistent with the response of the patient to ATRA therapy, we observed a rapid proliferation of t(4;15) primary cells following ATRA treatment ex vivo. Preliminary characterization of the retinoid response of t(4;15) AML revealed that in stark contrast to non-t(4;15) AML, these cells proliferate in response to specific agonists of RARα and RARγ. Furthermore, we observed an increase in the levels of nuclear RARγ upon ATRA treatment. In summary, the identification of the novel t(4;15)(q31;q22) reciprocal translocation opens new avenues in the study of retinoid resistance and provides potential for a new biomarker for therapy of AML.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Retinoids/therapeutic use , Transcription Factors/metabolism , Translocation, Genetic/genetics , Cells, Cultured , Female , Humans , Karyotyping , Leukemia, Myeloid, Acute/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Transcription Factors/genetics , Translocation, Genetic/drug effects , Tretinoin/therapeutic use , ras-GRF1/genetics , ras-GRF1/metabolism
10.
Int J Mol Sci ; 18(7)2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28678185

ABSTRACT

Alterations to the gene encoding the EZH2 (KMT6A) methyltransferase, including both gain-of-function and loss-of-function, have been linked to a variety of haematological malignancies and solid tumours, suggesting a complex, context-dependent role of this methyltransferase. The successful implementation of molecularly targeted therapies against EZH2 requires a greater understanding of the potential mechanisms by which EZH2 contributes to cancer. One aspect of this effort is the mapping of EZH2 partner proteins and cellular targets. To this end we performed affinity-purification mass spectrometry in the FAB-M2 HL-60 acute myeloid leukaemia (AML) cell line before and after all-trans retinoic acid-induced differentiation. These studies identified new EZH2 interaction partners and potential non-histone substrates for EZH2-mediated methylation. Our results suggest that EZH2 is involved in the regulation of translation through interactions with a number of RNA binding proteins and by methylating key components of protein synthesis such as eEF1A1. Given that deregulated mRNA translation is a frequent feature of cancer and that eEF1A1 is highly expressed in many human tumours, these findings present new possibilities for the therapeutic targeting of EZH2 in AML.


Subject(s)
Carrier Proteins/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Leukemia, Myeloid, Acute/metabolism , Mass Spectrometry , Protein Interaction Mapping , Amino Acid Sequence , Carrier Proteins/chemistry , Carrier Proteins/isolation & purification , Cell Line, Tumor , Computational Biology/methods , Enhancer of Zeste Homolog 2 Protein/chemistry , Enhancer of Zeste Homolog 2 Protein/isolation & purification , Gene Ontology , HL-60 Cells , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Methylation , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Mapping/methods , Protein Interaction Maps , Workflow
11.
Dis Model Mech ; 9(12): 1483-1495, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27799148

ABSTRACT

Histone deacetylase 9 (HDAC9) is expressed in B cells, and its overexpression has been observed in B-lymphoproliferative disorders, including B-cell non-Hodgkin lymphoma (B-NHL). We examined HDAC9 protein expression and copy number alterations in primary B-NHL samples, identifying high HDAC9 expression among various lymphoma entities and HDAC9 copy number gains in 50% of diffuse large B-cell lymphoma (DLBCL). To study the role of HDAC9 in lymphomagenesis, we generated a genetically engineered mouse (GEM) model that constitutively expressed an HDAC9 transgene throughout B-cell development under the control of the immunoglobulin heavy chain (IgH) enhancer (Eµ). Here, we report that the Eµ-HDAC9 GEM model develops splenic marginal zone lymphoma and lymphoproliferative disease (LPD) with progression towards aggressive DLBCL, with gene expression profiling supporting a germinal center cell origin, as is also seen in human B-NHL tumors. Analysis of Eµ-HDAC9 tumors suggested that HDAC9 might contribute to lymphomagenesis by altering pathways involved in growth and survival, as well as modulating BCL6 activity and p53 tumor suppressor function. Epigenetic modifications play an important role in the germinal center response, and deregulation of the B-cell epigenome as a consequence of mutations and other genomic aberrations are being increasingly recognized as important steps in the pathogenesis of a variety of B-cell lymphomas. A thorough mechanistic understanding of these alterations will inform the use of targeted therapies for these malignancies. These findings strongly suggest a role for HDAC9 in B-NHL and establish a novel GEM model for the study of lymphomagenesis and, potentially, preclinical testing of therapeutic approaches based on histone deacetylase inhibitors.


Subject(s)
B-Lymphocytes/enzymology , Gene Expression Regulation, Neoplastic , Histone Deacetylases/genetics , Lymphoma, B-Cell/enzymology , Lymphoma, B-Cell/genetics , Lymphoproliferative Disorders/enzymology , Lymphoproliferative Disorders/genetics , Repressor Proteins/genetics , Acetylation , Animals , B-Lymphocytes/pathology , Cell Cycle/genetics , Gene Expression Profiling , Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics , HeLa Cells , Histone Deacetylases/metabolism , Humans , Lymphoma, B-Cell/pathology , Lymphoproliferative Disorders/pathology , Mice, Transgenic , Proto-Oncogene Proteins c-bcl-6/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Protein p53/metabolism
12.
Cancer Res ; 76(10): 3025-35, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27197232

ABSTRACT

Neuroblastoma is the most common childhood extracranial solid tumor. In high-risk cases, many of which are characterized by amplification of MYCN, outcome remains poor. Mutations in the p53 (TP53) tumor suppressor are rare at diagnosis, but evidence suggests that p53 function is often impaired in relapsed, treatment-resistant disease. To address the role of p53 loss of function in the development and pathogenesis of high-risk neuroblastoma, we generated a MYCN-driven genetically engineered mouse model in which the tamoxifen-inducible p53ER(TAM) fusion protein was expressed from a knock-in allele (Th-MYCN/Trp53(KI)). We observed no significant differences in tumor-free survival between Th-MYCN mice heterozygous for Trp53(KI) (n = 188) and Th-MYCN mice with wild-type p53 (n = 101). Conversely, the survival of Th-MYCN/Trp53(KI/KI) mice lacking functional p53 (n = 60) was greatly reduced. We found that Th-MYCN/Trp53(KI/KI) tumors were resistant to ionizing radiation (IR), as expected. However, restoration of functional p53ER(TAM) reinstated sensitivity to IR in only 50% of Th-MYCN/Trp53(KI/KI) tumors, indicating the acquisition of additional resistance mechanisms. Gene expression and metabolic analyses indicated that the principal acquired mechanism of resistance to IR in the absence of functional p53 was metabolic adaptation in response to chronic oxidative stress. Tumors exhibited increased antioxidant metabolites and upregulation of glutathione S-transferase pathway genes, including Gstp1 and Gstz1, which are associated with poor outcome in human neuroblastoma. Accordingly, glutathione depletion by buthionine sulfoximine together with restoration of p53 activity resensitized tumors to IR. Our findings highlight the complex pathways operating in relapsed neuroblastomas and the need for combination therapies that target the diverse resistance mechanisms at play. Cancer Res; 76(10); 3025-35. ©2016 AACR.


Subject(s)
Adaptation, Physiological/radiation effects , Apoptosis/radiation effects , N-Myc Proto-Oncogene Protein/physiology , Neuroblastoma/metabolism , Neuroblastoma/pathology , Radiation Tolerance , Tumor Suppressor Protein p53/physiology , Animals , Blotting, Western , Cell Proliferation/radiation effects , Female , Humans , Immunoenzyme Techniques , Male , Mice , Mice, Transgenic , Neuroblastoma/radiotherapy , RNA, Messenger/genetics , Radiation, Ionizing , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
13.
Oncotarget ; 6(33): 34087-105, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26460951

ABSTRACT

Triple negative breast cancer (TNBC) is characterized by a poorly differentiated phenotype and limited treatment options. Aberrant epigenetics in this subtype represent a potential therapeutic opportunity, but a better understanding of the mechanisms contributing to the TNBC pathogenesis is required. The SIN3 molecular scaffold performs a critical role in multiple cellular processes, including epigenetic regulation, and has been identified as a potential therapeutic target. Using a competitive peptide corresponding to the SIN3 interaction domain of MAD (Tat-SID), we investigated the functional consequences of selectively blocking the paired amphipathic α-helix (PAH2) domain of SIN3. Here, we report the identification of the SID-containing adaptor PF1 as a factor required for maintenance of the TNBC stem cell phenotype and epithelial-to-mesenchymal transition (EMT). Tat-SID peptide blocked the interaction between SIN3A and PF1, leading to epigenetic modulation and transcriptional downregulation of TNBC stem cell and EMT markers. Importantly, Tat-SID treatment also led to a reduction in primary tumor growth and disseminated metastatic disease in vivo. In support of these findings, knockdown of PF1 expression phenocopied treatment with Tat-SID both in vitro and in vivo. These results demonstrate a critical role for a complex containing SIN3A and PF1 in TNBC and provide a rational for its therapeutic targeting.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Epithelial-Mesenchymal Transition/physiology , Homeodomain Proteins/metabolism , Neoplastic Stem Cells/pathology , Repressor Proteins/metabolism , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/pathology , Adaptor Proteins, Signal Transducing/genetics , Animals , Female , Homeodomain Proteins/genetics , Humans , Mice , Protein Structure, Tertiary , Sin3 Histone Deacetylase and Corepressor Complex , Spheroids, Cellular , Transcription Factors/genetics , Tumor Cells, Cultured
14.
Clin Cancer Res ; 21(22): 5100-9, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26202950

ABSTRACT

PURPOSE: MYCN-dependent neuroblastomas have low cure rates with current multimodal treatment regimens and novel therapeutic drugs are therefore urgently needed. In previous preclinical studies, we have shown that targeted inhibition of cyclin-dependent kinase 2 (CDK2) resulted in specific killing of MYCN-amplified neuroblastoma cells. This study describes the in vivo preclinical evaluation of the CDK inhibitor AT7519. EXPERIMENTAL DESIGN: Preclinical drug testing was performed using a panel of MYCN-amplified and MYCN single copy neuroblastoma cell lines and different MYCN-dependent mouse models of neuroblastoma. RESULTS: AT7519 killed MYCN-amplified neuroblastoma cell lines more potently than MYCN single copy cell lines with a median LC50 value of 1.7 compared to 8.1 µmol/L (P = 0.0053) and a significantly stronger induction of apoptosis. Preclinical studies in female NMRI homozygous (nu/nu) mice with neuroblastoma patient-derived MYCN-amplified AMC711T xenografts revealed dose-dependent growth inhibition, which correlated with intratumoral AT7519 levels. CDK2 target inhibition by AT7519 was confirmed by significant reductions in levels of phosphorylated retinoblastoma (p-Rb) and nucleophosmin (p-NPM). AT7519 treatment of Th-MYCN transgenic mice resulted in improved survival and clinically significant tumor regression (average tumor size reduction of 86% at day 7 after treatment initiation). The improved efficacy of AT7519 observed in Th-MYCN mice correlated with higher tumor exposure to the drug. CONCLUSIONS: This study strongly suggests that AT7519 is a promising drug for the treatment of high-risk neuroblastoma patients with MYCN amplification.


Subject(s)
Neuroblastoma/drug therapy , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Piperidines/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Pyrazoles/administration & dosage , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 2/biosynthesis , Cyclin-Dependent Kinase 2/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , N-Myc Proto-Oncogene Protein , Neuroblastoma/genetics , Neuroblastoma/pathology , Nuclear Proteins/biosynthesis , Oncogene Proteins/biosynthesis , Xenograft Model Antitumor Assays
15.
Mol Cancer Ther ; 14(8): 1824-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26078298

ABSTRACT

Triple-negative breast cancers (TNBC) lacking estrogen, progesterone, and HER2 receptors account for 10% to 20% of breast cancer and are indicative of poor prognosis. The development of effective treatment strategies therefore represents a pressing unmet clinical need. We previously identified a molecularly targeted approach to target aberrant epigenetics of TNBC using a peptide corresponding to the SIN3 interaction domain (SID) of MAD. SID peptide selectively blocked binding of SID-containing proteins to the paired α-helix (PAH2) domain of SIN3, resulting in epigenetic and transcriptional modulation of genes associated with epithelial-mesenchymal transition (EMT). To find small molecule inhibitor (SMI) mimetics of SID peptide, we performed an in silico screen for PAH2 domain-binding compounds. This led to the identification of the avermectin macrocyclic lactone derivatives selamectin and ivermectin (Mectizan) as candidate compounds. Both selamectin and ivermectin phenocopied the effects of SID peptide to block SIN3-PAH2 interaction with MAD, induce expression of CDH1 and ESR1, and restore tamoxifen sensitivity in MDA-MB-231 human and MMTV-Myc mouse TNBC cells in vitro. Treatment with selamectin or ivermectin led to transcriptional modulation of genes associated with EMT and maintenance of a cancer stem cell phenotype in TNBC cells. This resulted in impairment of clonogenic self-renewal in vitro and inhibition of tumor growth and metastasis in vivo. Underlining the potential of avermectins in TNBC, pathway analysis revealed that selamectin also modulated the expression of therapeutically targetable genes. Consistent with this, an unbiased drug screen in TNBC cells identified selamectin-induced sensitization to a number of drugs, including those targeting modulated genes.


Subject(s)
Ivermectin/analogs & derivatives , Repressor Proteins/antagonists & inhibitors , Triple Negative Breast Neoplasms/metabolism , Animals , Antigens, CD , Antiparasitic Agents/pharmacology , Cadherins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm , Estrogen Receptor alpha/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Ivermectin/chemistry , Ivermectin/pharmacology , Mice , Models, Molecular , Molecular Conformation , Protein Interaction Domains and Motifs , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
16.
Cancer Res ; 75(15): 3043-53, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26054597

ABSTRACT

Neuroblastoma is the most common extracranial solid tumor of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumor cells suppress T-cell proliferation through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine-deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34(+) progenitor proliferation. Finally, we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1-specific T-cell receptor and GD2-specific chimeric antigen receptor-engineered T-cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for patients with neuroblastoma. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumor and blood that leads to impaired immunosurveillance and suboptimal efficacy of immunotherapeutic approaches.


Subject(s)
Arginase/metabolism , Neuroblastoma/immunology , Tumor Microenvironment/immunology , Animals , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Arginase/immunology , Arginine/metabolism , Cell Proliferation , Gangliosides/metabolism , Humans , Lymphocyte Activation/immunology , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neuroblastoma/metabolism , Neuroblastoma/mortality , Neuroblastoma/pathology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
17.
PLoS One ; 10(3): e0119834, 2015.
Article in English | MEDLINE | ID: mdl-25785590

ABSTRACT

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. While the pathways that are deregulated in MB remain to be fully characterized, amplification and/or overexpression of the MYCN gene, which is has a critical role in cerebellar development as a regulator of neural progenitor cell fate, has been identified in several MB subgroups. Phenotypically, aberrant expression of MYCN is associated with the large-cell/anaplastic MB variant, which accounts for 5-15% of cases and is associated with aggressive disease and poor clinical outcome. To better understand the role of MYCN in MB in vitro and in vivo and to aid the development of MYCN-targeted therapeutics we established tumor-derived neurosphere cell lines from the GTML (Glt1-tTA/TRE-MYCN-Luc) genetically engineered mouse model. A fraction of GTML neurospheres were found to be growth factor independent, expressed CD133 (a marker of neural stem cells), failed to differentiate upon MYCN withdrawal and were highly tumorigenic when orthotopically implanted into the cerebellum. Principal component analyzes using single cell RNA assay data suggested that the clinical candidate aurora-A kinase inhibitor MLN8237 converts GTML neurospheres to resemble non-MYCN expressors. Correlating with this, MLN8237 significantly extended the survival of mice bearing GTML MB allografts. In summary, our results demonstrate that MYCN plays a critical role in expansion and survival of aggressive MB-propagating cells, and establish GTML neurospheres as an important resource for the development of novel therapeutic strategies.


Subject(s)
Cerebellar Neoplasms/pathology , Cerebellum/pathology , Medulloblastoma/pathology , Neoplastic Stem Cells/pathology , Neural Stem Cells/pathology , Proto-Oncogene Proteins/genetics , Allografts , Animals , Antineoplastic Agents/pharmacology , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Azepines/pharmacology , Cell Line, Tumor , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/mortality , Cerebellum/drug effects , Cerebellum/metabolism , Female , Gene Expression , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/mortality , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein , Neoplasm Transplantation , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Principal Component Analysis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/metabolism , Pyrimidines/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Survival Analysis
18.
Cancer Cell ; 27(1): 72-84, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25533335

ABSTRACT

We undertook a comprehensive clinical and biological investigation of serial medulloblastoma biopsies obtained at diagnosis and relapse. Combined MYC family amplifications and P53 pathway defects commonly emerged at relapse, and all patients in this group died of rapidly progressive disease postrelapse. To study this interaction, we investigated a transgenic model of MYCN-driven medulloblastoma and found spontaneous development of Trp53 inactivating mutations. Abrogation of p53 function in this model produced aggressive tumors that mimicked characteristics of relapsed human tumors with combined P53-MYC dysfunction. Restoration of p53 activity and genetic and therapeutic suppression of MYCN all reduced tumor growth and prolonged survival. Our findings identify P53-MYC interactions at medulloblastoma relapse as biomarkers of clinically aggressive disease that may be targeted therapeutically.


Subject(s)
Cerebellar Neoplasms/genetics , Medulloblastoma/genetics , Neoplasm Recurrence, Local/genetics , Proto-Oncogene Proteins c-myc/genetics , Tumor Suppressor Protein p53/genetics , Adolescent , Adult , Animals , Antineoplastic Agents/therapeutic use , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/pathology , Child , Child, Preschool , Female , Gene Amplification , Humans , Infant , Male , Medulloblastoma/drug therapy , Medulloblastoma/pathology , Mice , Molecular Sequence Data , Mutation , N-Myc Proto-Oncogene Protein , Neoplasm Recurrence, Local/drug therapy , Neoplasms, Experimental , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Young Adult
19.
Clin Cancer Res ; 19(21): 5814-21, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23965898

ABSTRACT

Clinical outcome remains poor in patients with high-risk neuroblastoma, in which chemoresistant relapse is common following high-intensity conventional multimodal therapy. Novel treatment approaches are required. Although recent genomic profiling initiatives have not revealed a high frequency of mutations in any significant number of therapeutically targeted genes, two exceptions, amplification of the MYCN oncogene and somatically acquired tyrosine kinase domain point mutations in anaplastic lymphoma kinase (ALK), present exciting possibilities for targeted therapy. In contrast with the situation with ALK, in which a robust pipeline of pharmacologic agents is available from early clinical use in adult malignancy, therapeutic targeting of MYCN (and MYC oncoproteins in general) represents a significant medicinal chemistry challenge that has remained unsolved for two decades. We review the latest approaches envisioned for blockade of ALK activity in neuroblastoma, present a classification of potential approaches for therapeutic targeting of MYCN, and discuss how recent developments in targeting of MYC proteins seem to make therapeutic inhibition of MYCN a reality in the clinic.


Subject(s)
Neuroblastoma/genetics , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase , Animals , Enzyme Activation , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy , Molecular Targeted Therapy , Mutation , N-Myc Proto-Oncogene Protein , Neuroblastoma/metabolism , Neuroblastoma/therapy , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/metabolism , Protein Binding , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Transcription, Genetic
20.
Nat Med ; 18(4): 605-11, 2012 Mar 11.
Article in English | MEDLINE | ID: mdl-22406747

ABSTRACT

Acute promyelocytic leukemia (APL), a cytogenetically distinct subtype of acute myeloid leukemia (AML), characterized by the t(15;17)-associated PML-RARA fusion, has been successfully treated with therapy utilizing all-trans-retinoic acid (ATRA) to differentiate leukemic blasts. However, among patients with non-APL AML, ATRA-based treatment has not been effective. Here we show that, through epigenetic reprogramming, inhibitors of lysine-specific demethylase 1 (LSD1, also called KDM1A), including tranylcypromine (TCP), unlocked the ATRA-driven therapeutic response in non-APL AML. LSD1 inhibition did not lead to a large-scale increase in histone 3 Lys4 dimethylation (H3K4(me2)) across the genome, but it did increase H3K4(me2) and expression of myeloid-differentiation-associated genes. Notably, treatment with ATRA plus TCP markedly diminished the engraftment of primary human AML cells in vivo in nonobese diabetic (NOD)-severe combined immunodeficient (SCID) mice, suggesting that ATRA in combination with TCP may target leukemia-initiating cells. Furthermore, initiation of ATRA plus TCP treatment 15 d after engraftment of human AML cells in NOD-SCID γ (with interleukin-2 (IL-2) receptor γ chain deficiency) mice also revealed the ATRA plus TCP drug combination to have a potent anti-leukemic effect that was superior to treatment with either drug alone. These data identify LSD1 as a therapeutic target and strongly suggest that it may contribute to AML pathogenesis by inhibiting the normal pro-differentiative function of ATRA, paving the way for new combinatorial therapies for AML.


Subject(s)
Cell Differentiation/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Tretinoin/therapeutic use , Animals , Antigens, CD34/metabolism , Apoptosis/drug effects , Apoptosis/physiology , CD11b Antigen/metabolism , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Drug Interactions , Enzyme Inhibitors/therapeutic use , Female , Flow Cytometry , Gene Expression Regulation/drug effects , Histone Demethylases/metabolism , Humans , Lysine/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , RNA, Small Interfering/metabolism , Stem Cell Factor/metabolism , Time Factors , Transplants , Tranylcypromine/therapeutic use , Tretinoin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...