Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 475(2229): 20190310, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31611727

ABSTRACT

A new test technique and bespoke apparatus to conduct high strain rate measurements of the tensile response of materials are presented. The new test method is applicable to brittle solids and composites as well as high-performance fibres, yarns and tapes used in composite construction. In this study, the dynamic response of monolithic poly(methyl methacrylate) and unidirectional composites based on Dyneema® tape, Dyneema® SK75 yarn and Kevlar® 49 yarn are explored. The technique allows early force equilibrium and yields valid tensile stress-strain curves, which include part of the elastic material response. The new method also enables investigation of size effects in tape and yarn materials, allowing testing of specimens of arbitrary length.

2.
Sci Rep ; 9(1): 13964, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31562346

ABSTRACT

We present an application of data analytics and supervised machine learning to allow accurate predictions of the macroscopic stiffness and yield strength of a unidirectional composite loaded in the transverse plane. Predictions are obtained from the analysis of an image of the material microstructure, as well as knowledge of the constitutive models for fibres and matrix, without performing physically-based calculations. The computational framework is based on evaluating the 2-point correlation function of the images of 1800 microstructures, followed by dimensionality reduction via principal component analysis. Finite element (FE) simulations are performed on 1800 corresponding statistical volume elements (SVEs) representing cylindrical fibres in a continuous matrix, loaded in the transverse plane. A supervised machine learning (ML) exercise is performed, employing a gradient-boosted tree regression model with 10-fold cross-validation strategy. The model obtained is able to accurately predict the homogenized properties of arbitrary microstructures.

3.
J Mech Behav Biomed Mater ; 57: 365-75, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26947273

ABSTRACT

Titanium foams of relative density in the range 0.35-0.50 are tested in quasi-static compression, tension and shear. The response is ductile in compression but brittle, and weaker, in shear and tension. Virtual foam microstructures are generated by an algorithm based on Voronoi tessellation of three-dimensional space, capable of reproducing the measured size distribution of the pores in the foam. Finite Element (FE) simulations are conducted to explore the mechanical response of the material, by analysing the elasto-plastic response of a statistical volume element (SVE). The simulations correctly predict the ductile compressive response and its dependence on relative density.


Subject(s)
Finite Element Analysis , Materials Testing , Mechanical Phenomena , Titanium , Porosity , Stress, Mechanical , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL