Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Clin Pharmacol Drug Dev ; 13(4): 419-431, 2024 04.
Article in English | MEDLINE | ID: mdl-38168134

ABSTRACT

GP40141 is a romiplostim biosimilar. A Phase 1 clinical trial was previously conducted in healthy volunteers to evaluate the pharmacodynamics (PD), pharmacokinetics (PK), and safety of GP40141 compared to the reference romiplostim (NCT05652595). Using noncompartmental analysis, the biosimilarity of PD end points was determined according to the classical criterion (0.8-1.25). PK end points were also in good agreement between GP40141 and the reference romiplostim; however, the confidence interval for the area under concentration-time curve from time 0 to the time of last measurement was slightly out of the bioequivalence range (0.91-1.29). Population PK/PD was used in the present study to characterize the individual PK and PD data of 56 healthy subjects in 2 cross-over periods of the Phase 1 clinical trial. Body weight and neutralizing antibodies to romiplostim were found to be important predictors of apparent volume of distribution and linear elimination constant, respectively. Within the framework of the conducted modeling, population estimates of PK/PD parameters were obtained, which were in agreement with literature data for the reference romiplostim. Additionally, values of intersubject variability, previously unreported for romiplostim in a healthy subject population, were derived. Covariate analysis, conducted during model development, as well as visual diagnostics and model-based simulations, demonstrated the absence of significant differences in PK and PD between GP40141 and romiplostim-ref.


Subject(s)
Biosimilar Pharmaceuticals , Recombinant Fusion Proteins , Humans , Healthy Volunteers , Biosimilar Pharmaceuticals/pharmacokinetics , Thrombopoietin , Receptors, Fc
2.
Front Vet Sci ; 9: 1042063, 2022.
Article in English | MEDLINE | ID: mdl-36337198

ABSTRACT

The present study aimed at assessing the effects of dietary Hyssop, Hyssopus officinalis, extract on rainbow trout, Oncorhynchus mykiss, responses to thermal stress. The juveniles (69.8 ± 0.38 g) were stocked in 12 through-flow tanks at a density of 12 fish per tank. Methanolic extract of Hyssop (HME) was added to diet at 0, 100, 250, and 500 mg/kg and the fish were fed (3% of biomass) over a 70-d period: 62 d at 13.3 ± 0.08°C and 7 d at 21-22°C. At the end of the trial, the plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), triiodothyronine (T3), thyroxin (T4), cortisol, glucose, lactate, total antioxidant capacity (TAC), ascorbate, and the gill glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and malondialdehyde (MDA). The results showed that HME had no significant effects on fish growth performance, survival, and feed efficiency. Dietary 250 mg/kg HME significantly decreased plasma ALT activity (P < 0.001), but showed no significant effects on plasma AST) (P = 0.106) activity, T3 (P = 0.992), and T4 (P = 0.070) levels. Thermal stress significantly (P < 0.001) increased plasma ALT and AST activities, but lowered plasma T3 and T4 levels. Dietary HME and thermal stress had interaction effects on plasma cortisol (P < 0.001), glucose (P = 0.007), lactate (P = 0.010), LDH (P = 0.005), TAC (P = 0.038), ascorbate (P < 0.001), and the gill GPx (P = 0.001), GR (P < 0.001), GST (P < 0.001), and MDA (P = 0.001). Thermal stress significantly increased plasma cortisol, glucose, lactate, and LDH, the gill GPX, GR, and GST, but dietary HME supplementation significantly reduced such elevations, particularly at 250 mg/kg level. Dietary HME significantly increased plasma TAC before the thermal stress and mitigated the stress-induced decreased in TAC, particularly at 250 mg/kg level. Dietary HME significantly decreased the gill MDA before and after the thermal stress, and lowest MDA was observed in 250 mg/kg HME level. Based on the present results, 250 mg/kg HME is recommended as suitable dose to improve antioxidative responses and hepatoprotection in rainbow trout under heat stress.

3.
Vet World ; 15(9): 2259-2268, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36341078

ABSTRACT

Background and Aim: It is known that during the early postpartum and lactation periods in dairy cows, metabolic disorders develop, that is, ketosis, which can lead to secondary damage to internal organs. Therefore, it is important to address the issues of changing the lactating cows' clinical, laboratory, and physiological parameters regarding the development of hepatocardial syndrome. This study aimed to provide clinical and diagnostic justification for developing hepatocardial syndrome in highly productive dairy cows. Materials and Methods: The study was conducted on 20 black and white cows in the early postpartum period (7-10 days after birth), with a milk production level of >4500 kg of milk during the previous lactation period, a positive result in the formol colloid sedimentary test, the presence of deafness and splitting of heart sounds, changes in the size, or increased pain sensitivity of the percussion field of the liver. Clinically healthy dairy cows in the early postpartum period were used as controls (n = 24). Clinical, electrocardiographic, echocardiographic, and biochemical parameters were also evaluated. Results: Dairy cows with hepatocardial syndrome developed arterial hypertension and sinus tachycardia, which led to a significant decrease in PQ and QT intervals at ECG. A significant increase in the diastolic size of the interventricular septum, systolic size of the free wall of the left ventricle, and diastolic and systolic sizes of the left ventricle and a significant decrease in the shortening fraction of the left ventricular myocardium were observed in the cows due to the development of hepatocardial syndrome. The affected cows demonstrated a significant increase in serum activity of gamma-glutamyl transferase, alanine aminotransferase, lactate dehydrogenase, creatine phosphokinase, alkaline phosphatase, troponin, malondialdehyde, diene conjugates, and ceruloplasmin and a decrease in glucose concentration. In addition, they demonstrated decreased activity of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Conclusion: Hepatocardial syndrome in dairy cows occurs due to ketosis, characterized by arterial hypertension, sinus tachycardia, a moderate decrease in myocardial contractility, oxidative stress, and cytolysis of cardiomyocytes and hepatocytes. Therefore, the control and prevention of the development of hepatocardial syndrome will make it possible to maintain the productive health and longevity of dairy cows.

4.
Vet Sci ; 9(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36288147

ABSTRACT

Animal feeding research has revealed a close relationship between the chemical composition and nutritional value of cow rations, the number of rumen bacterial communities and animal productivity. Our present research aimed to investigate the outcome of inclusion of different levels of protein concentrate in rations of Ayrshire dairy cows in relation to the rumen microbiome, reproductive traits and economic value. Forty-five Ayrshire cows were divided into three groups (15 in each). The first control group 0 AM was fed the basal ration, while the second 1 AM and third 2 AM groups were fed the basic ration with the sunflower cake replaced by different levels of protein concentrate Agro-Matic (1 and 1.5 kg/head/day, respectively). Ruminal fluid samples, reproductive parameters and economic value were studied. During the early lactation period, 120 days in milk (DIM), the number of pathogenic microorganisms decreased in both the 1 AM and 2 AM groups when compared with the control group 0 AM; moreover, a significant decrease in Peptococcus bacteria was recorded in the 1 AM group, while Fusobacterium decreased in the 2 AM group. At the end of lactation, the total number of cellulolytic bacteria increased with the use of protein concentrate in animals of the 1 AM group when compared with the control group. Regarding undesirable bacteria, the 2 AM group recorded the highest value for Lactobacilli and Actinobacteria when compared with the 0 AM group (0.18 and 8.90 vs. 0.04 and 4.24), and the differences were significant (p < 0.05). The insemination index and the duration of the days open period decreased in the 2 AM group, while the differences were p > 0.05. The profitability of milk production increased by 2.76% and 6.28% in both supplemented groups, and the differences compared to the 0 AM group were significant. We conclude that the supplementation of Agro-Matic caused no deviations from the normal standards of cellulolytic, amylolytic, transit and pathogenic bacteria, no impact on reproductive functions and significantly improved the profitability of the milk production process of Ayrshire dairy cows.

5.
Clin Pharmacol Drug Dev ; 11(12): 1457-1466, 2022 12.
Article in English | MEDLINE | ID: mdl-35980375

ABSTRACT

This paper presents an analysis of data from a comparative study of biosimilarity in terms of pharmacokinetics and pharmacodynamics in healthy volunteers using a hyperinsulinemic euglycemic clamp for reference and test biphasic insulin aspart 30 (BIAsp 30). As a result of the study, one of the secondary pharmacodynamic (PD) endpoints did not satisfy the classical criterion of 80%-125% (the lower limit for PD parameter area under the glucose infusion rate-time curve [ AUC GIR 0 - t ${\rm{AUC}}_{{\rm{GIR}}_{0 - {\rm{t}}}}$ ] turned out to be 79.5%). The main hypothesis explaining this result is that the sample size is insufficient to conduct a PD test with 90% statistical power, since the sample size has been calculated based on the coefficient of variation (CV) of pharmacokinetic (PK) parameters. To test this hypothesis, population PKPD (popPKPD) modeling and subsequent simulations of the required number of PD profiles were used. Two popPKPD models were constructed (a one-compartment double simultaneous absorption model for PK and an effect compartment Emax model for PD) to describe the PKPD data of reference and test insulins. As a result, using real data along with model-based simulation data, a biosimilarity test for PD was performed, and the lower limit for AUC GIR 0 - t ${\rm{AUC}}_{{\rm{GIR}}_{0 - {\rm{t}}}}$ became 82.6%, while the CV decreased from 31.7% to 24.1%. Thus, popPKPD modeling and simulations have been shown to be effective in interpreting and supporting the results of clinical biosimilarity trials.


Subject(s)
Biosimilar Pharmaceuticals , Humans , Hypoglycemic Agents/pharmacokinetics , Double-Blind Method , Cross-Over Studies
6.
ACS Omega ; 7(17): 14571-14578, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35557663

ABSTRACT

The structural, electronic, and magnetic properties of Sr-hole-doped epitaxial La1-x Sr x MnO3 (0.15 ≤ x ≤ 0.45) thin films deposited using the molecular beam epitaxy technique on 4° vicinal STO (001) substrates are probed by the combination of X-ray diffraction and various synchrotron-based spectroscopy techniques. The structural characterizations evidence a significant shift in the LSMO (002) peak to the higher diffraction angles owing to the increase in Sr doping concentrations in thin films. The nature of the LSMO Mn mixed-valence state was estimated from X-ray photoemission spectroscopy together with the relative changes in the Mn L2,3 edges observed in X-ray absorption spectroscopy (XAS), both strongly affected by doping. CTM4XAS simulations at the XAS Mn L2,3 edges reveal the combination of epitaxial strain, and different MnO6 crystal field splitting give rise to a peak at ∼641 eV. The observed changes in the occupancy of the eg and the t2g orbitals as well as their binding energy positions toward the Fermi level with hole doping are discussed. The room-temperature magnetic properties were probed at the end by circular dichroism.

7.
Science ; 365(6451): 386-392, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31273070

ABSTRACT

Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.


Subject(s)
Ceramides/metabolism , Fatty Liver/genetics , Fatty Liver/metabolism , Insulin Resistance/genetics , Membrane Proteins/genetics , Oxidoreductases/genetics , Animals , Ceramides/chemistry , Ceramides/genetics , Diet, High-Fat/adverse effects , Gene Deletion , Leptin/deficiency , Mice , Mice, Mutant Strains , Sphingolipids/chemistry , Sphingolipids/metabolism
8.
Diabetes ; 67(7): 1401-1413, 2018 07.
Article in English | MEDLINE | ID: mdl-29669745

ABSTRACT

Insulin-induced hypoglycemia in diabetes is associated with impaired glucagon secretion. In this study, we tested whether stimulation of GPR119, a G-protein-coupled receptor expressed in pancreatic islet as well as enteroendocrine cells and previously shown to stimulate insulin and incretin secretion, might enhance glucagon secretion during hypoglycemia. In the study, GPR119 agonists were applied to isolated islets or perfused pancreata to assess insulin and glucagon secretion during hypoglycemic or hyperglycemic conditions. Insulin infusion hypoglycemic clamps were performed with or without GPR119 agonist pretreatment to assess glucagon counterregulation in healthy and streptozotocin (STZ)-induced diabetic rats, including those exposed to recurrent bouts of insulin-induced hypoglycemia that leads to suppression of hypoglycemia-induced glucagon release. Hypoglycemic clamp studies were also conducted in GPR119 knockout (KO) mice to evaluate whether the pharmacological stimulatory actions of GPR119 agonists on glucagon secretion during hypoglycemia were an on-target effect. The results revealed that GPR119 agonist-treated pancreata or cultured islets had increased glucagon secretion during low glucose perfusion. In vivo, GPR119 agonists also significantly increased glucagon secretion during hypoglycemia in healthy and STZ-diabetic rats, a response that was absent in GPR119 KO mice. In addition, impaired glucagon counterregulatory responses were restored by a GPR119 agonist in STZ-diabetic rats that were exposed to antecedent bouts of hypoglycemia. Thus, GPR119 agonists have the ability to pharmacologically augment glucagon secretion, specifically in response to hypoglycemia in diabetic rodents. Whether this effect might serve to diminish the occurrence and severity of iatrogenic hypoglycemia during intensive insulin therapy in patients with diabetes remains to be established.


Subject(s)
Glucagon/metabolism , Hypoglycemia/chemically induced , Hypoglycemia/metabolism , Insulin/adverse effects , Receptors, G-Protein-Coupled/agonists , Adult , Animals , Cells, Cultured , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glucose Tolerance Test , Humans , Hypoglycemic Agents/adverse effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/genetics , Streptozocin , Young Adult
9.
Am J Physiol Endocrinol Metab ; 315(3): E416-E424, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29509438

ABSTRACT

Numerous studies have implicated dyslipidemia as a key factor in mediating insulin resistance. Ceramides have received special attention since their levels are inversely associated with normal insulin signaling and positively associated with factors that are involved in cardiometabolic disease. Despite the growing literature surrounding ceramide biology, there are limited data regarding the activity of ceramide synthesis and turnover in vivo. Herein, we demonstrate the ability to measure ceramide kinetics by coupling the administration of [2H]water with LC-MS/MS analyses. As a "proof-of-concept" we determined the effect of a diet-induced alteration on ceramide flux; studies also examined the effect of myriocin (a known inhibitor of serine palmitoyltransferase, the first step in sphingosine biosynthesis). Our data suggest that one can estimate ceramide synthesis and draw conclusions regarding the source of fatty acids; we discuss caveats in regards to method development in this area.


Subject(s)
Ceramides/pharmacokinetics , Animals , Chromatography, High Pressure Liquid , Deuterium Oxide/pharmacokinetics , Diet , Enzyme Inhibitors , Fatty Acids, Monounsaturated/pharmacology , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Radioactive Tracers , Serine C-Palmitoyltransferase/antagonists & inhibitors , Tandem Mass Spectrometry
10.
Science ; 357(6350): 507-511, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28705990

ABSTRACT

5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722-mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cardiomegaly/chemically induced , Glucose/metabolism , Homeostasis/drug effects , Imidazoles/pharmacology , Pyridines/pharmacology , Animals , Benzimidazoles , Blood Glucose/drug effects , Fasting , Glycogen/metabolism , Hypoglycemia/chemically induced , Imidazoles/adverse effects , Imidazoles/chemistry , Insulin/pharmacology , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Pyridines/adverse effects , Pyridines/chemistry
11.
J Lipid Res ; 58(8): 1561-1578, 2017 08.
Article in English | MEDLINE | ID: mdl-28583918

ABSTRACT

GPR40 and GPR120 are fatty acid sensors that play important roles in glucose and energy homeostasis. GPR40 potentiates glucose-dependent insulin secretion and demonstrated in clinical studies robust glucose lowering in type 2 diabetes. GPR120 improves insulin sensitivity in rodents, albeit its mechanism of action is not fully understood. Here, we postulated that the antidiabetic efficacy of GPR40 could be enhanced by coactivating GPR120. A combination of GPR40 and GPR120 agonists in db/db mice, as well as a single molecule with dual agonist activities, achieved superior glycemic control compared with either monotherapy. Compared with a GPR40 selective agonist, the dual agonist improved insulin sensitivity in ob/ob mice measured by hyperinsulinemic-euglycemic clamp, preserved islet morphology, and increased expression of several key lipolytic genes in adipose tissue of Zucker diabetic fatty rats. Novel insights into the mechanism of action for GPR120 were obtained. Selective GPR120 activation suppressed lipolysis in primary white adipocytes, although this effect was attenuated in adipocytes from obese rats and obese rhesus, and sensitized the antilipolytic effect of insulin in rat and rhesus primary adipocytes. In conclusion, GPR120 agonism enhances insulin action in adipose tissue and yields a synergistic efficacy when combined with GPR40 agonism.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Experimental/metabolism , Lipolysis , Receptors, G-Protein-Coupled/metabolism , Adipose Tissue/drug effects , Animals , CHO Cells , Cricetinae , Cricetulus , Diabetes Mellitus, Experimental/pathology , Gene Expression Regulation/drug effects , Insulin Resistance , Islets of Langerhans/drug effects , Islets of Langerhans/physiopathology , Lipolysis/drug effects , Male , Mice , Rats , Receptors, G-Protein-Coupled/agonists
12.
Am J Physiol Endocrinol Metab ; 311(6): E911-E921, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27651111

ABSTRACT

Aberrant regulation of glucose production makes a critical contribution to the impaired glycemic control that is observed in type 2 diabetes. Although isotopic tracer methods have proven to be informative in quantifying the magnitude of such alterations, it is presumed that one must rely on venous access to administer glucose tracers which therein presents obstacles for the routine application of tracer methods in rodent models. Since intraperitoneal injections are readily used to deliver glucose challenges and/or dose potential therapeutics, we hypothesized that this route could also be used to administer a glucose tracer. The ability to then reliably estimate glucose flux would require attention toward setting a schedule for collecting samples and choosing a distribution volume. For example, glucose production can be calculated by multiplying the fractional turnover rate by the pool size. We have taken a step-wise approach to examine the potential of using an intraperitoneal tracer administration in rat and mouse models. First, we compared the kinetics of [U-13C]glucose following either an intravenous or an intraperitoneal injection. Second, we tested whether the intraperitoneal method could detect a pharmacological manipulation of glucose production. Finally, we contrasted a potential application of the intraperitoneal method against the glucose-insulin clamp. We conclude that it is possible to 1) quantify glucose production using an intraperitoneal injection of tracer and 2) derive a "glucose production index" by coupling estimates of basal glucose production with measurements of fasting insulin concentration; this yields a proxy for clamp-derived assessments of insulin sensitivity of endogenous production.


Subject(s)
Blood Glucose/metabolism , Indicators and Reagents , Animals , Blood Glucose/drug effects , Carbon Isotopes , Diet, High-Fat , Female , Glucose Clamp Technique , Hypoglycemic Agents/pharmacology , Injections, Intraperitoneal , Injections, Intravenous , Insulin Resistance , Kinetics , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Pilot Projects , Rats , Rats, Sprague-Dawley , Rats, Zucker , Rosiglitazone , Thiazolidinediones/pharmacology
13.
Bioorg Med Chem Lett ; 26(11): 2622-6, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27106708

ABSTRACT

Novel potent and selective 5,6,5- and 5,5,6-tricyclic pyrrolidine dipeptidyl peptidase IV (DPP-4) inhibitors were identified. Structure-activity relationship (SAR) efforts focused on improving the intrinsic DPP-4 inhibition potency, increasing protease selectivity, and demonstrating clean ion channel and cytochrome P450 profiles while trying to achieve a pharmacokinetic profile suitable for once weekly dosing in humans.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Drug Discovery , Pyrrolidines/pharmacology , Animals , Crystallography, X-Ray , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dogs , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Rats , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 25(24): 5767-71, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26546218

ABSTRACT

A series of novel substituted-[(3R)-amino-2-(2,5-difluorophenyl)]tetrahydro-2H-pyran analogs have been prepared and evaluated as potent, selective and orally active DPP-4 inhibitors. These efforts lead to the discovery of a long acting DPP-4 inhibitor, omarigliptin (MK-3102), which recently completed phase III clinical development and has been approved in Japan.


Subject(s)
Amides/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Heterocyclic Compounds, 2-Ring/chemistry , Pyrans/chemistry , Sulfonamides/chemistry , Animals , Binding Sites , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors/pharmacokinetics , Dogs , Half-Life , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Molecular Docking Simulation , Protein Structure, Tertiary , Pyrans/chemical synthesis , Pyrans/pharmacokinetics , Rats , Structure-Activity Relationship
15.
J Med Chem ; 57(8): 3205-12, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24660890

ABSTRACT

In our effort to discover DPP-4 inhibitors with added benefits over currently commercially available DPP-4 inhibitors, MK-3102 (omarigliptin), was identified as a potent and selective dipeptidyl peptidase 4 (DPP-4) inhibitor with an excellent pharmacokinetic profile amenable for once-weekly human dosing and selected as a clinical development candidate. This manuscript summarizes the mechanism of action, scientific rationale, medicinal chemistry, pharmacokinetic properties, and human efficacy data for omarigliptin, which is currently in phase 3 clinical development.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Heterocyclic Compounds, 2-Ring/pharmacology , Hypoglycemic Agents/pharmacology , Pyrans/pharmacology , Animals , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors/pharmacokinetics , Dipeptidyl-Peptidase IV Inhibitors/toxicity , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Heterocyclic Compounds, 2-Ring/toxicity , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/toxicity , Pyrans/chemical synthesis , Pyrans/pharmacokinetics , Pyrans/toxicity , Structure-Activity Relationship
16.
Bioorg Med Chem ; 21(22): 7064-73, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24094437

ABSTRACT

Peptide agonists of the glucagon-like peptide 1 (GLP-1) receptor (GLP1R) are rapidly gaining favor as antidiabetic agents, since in addition to increasing glucose-dependent insulin secretion, they also cause weight loss. Oxyntomodulin (OXM), a natural peptide with sequence homology to both glucagon and GLP-1, has glucose-lowering activity in rodents and anorectic activity in rodents and humans, but its clinical utility is limited by a short circulatory half-life due to rapid renal clearance and degradation by dipeptidyl peptidase IV (DPP-IV). Here, we describe the development of a novel DPP-IV-resistant, long-acting GLP1R agonist, based on derivatization of a suitably chosen OXM analog with high molecular weight polyethylene glycol (PEG) ('PEGylation'). PEG-OXM exerts an anti-hyperglycemic effect in diet-induced obese (DIO) mice in a glucose-dependent manner, with a maximally efficacious dose of 0.1mg/kg, and reduces food intake and body weight with a minimally efficacious dose of 1mg/kg. If this pharmacology is recapitulated in patients with type 2 diabetes, these results indicate PEG-OXM as a potential novel once-weekly GLP-1 mimetic with both glucose-lowering activity and weight loss efficacy.


Subject(s)
Appetite Depressants/chemistry , Hypoglycemic Agents/chemistry , Oxyntomodulin/chemistry , Polyethylene Glycols/chemistry , Receptors, Glucagon/agonists , Animals , Appetite Depressants/chemical synthesis , Appetite Depressants/pharmacokinetics , Body Weight/drug effects , Eating/drug effects , Glucagon-Like Peptide-1 Receptor , Glucose Tolerance Test , Half-Life , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Primates , Receptors, Glucagon/metabolism
17.
Rev Sci Instrum ; 84(1): 013507, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23387650

ABSTRACT

Results are presented for measurements of microwave power of the Borets-75/0.8 gyrotron with recovery of residual electron energy, which were performed by a flow-type calorimeter. This gyrotron is a part of the ECR plasma heating complex put into operation in 2010 at the L-2M stellarator. The new calorimeter is capable of measuring microwave power up to 0.5 MW. Monitoring of the microwave power makes it possible to control the parameters of the gyrotron power supply unit (its voltage and current) and the magnetic field of the cryomagnet in order to optimize the gyrotron operation and arrive at maximum efficiency.

18.
J Pharmacol Exp Ther ; 344(2): 407-16, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23161216

ABSTRACT

The voltage-gated potassium channels Kv2.1 and Kv2.2 are highly expressed in pancreatic islets, yet their contribution to islet hormone secretion is not fully understood. Here we investigate the role of Kv2 channels in pancreatic islets using a combination of genetic and pharmacologic approaches. Pancreatic ß-cells from Kv2.1(-/-) mice possess reduced Kv current and display greater glucose-stimulated insulin secretion (GSIS) relative to WT ß-cells. Inhibition of Kv2.x channels with selective peptidyl [guangxitoxin-1E (GxTX-1E)] or small molecule (RY796) inhibitors enhances GSIS in isolated wild-type (WT) mouse and human islets, but not in islets from Kv2.1(-/-) mice. However, in WT mice neither inhibitor improved glucose tolerance in vivo. GxTX-1E and RY796 enhanced somatostatin release in isolated human and mouse islets and in situ perfused pancreata from WT and Kv2.1(-/-) mice. Kv2.2 silencing in mouse islets by adenovirus-small hairpin RNA (shRNA) specifically enhanced islet somatostatin, but not insulin, secretion. In mice lacking somatostatin receptor 5, GxTX-1E stimulated insulin secretion and improved glucose tolerance. Collectively, these data show that Kv2.1 regulates insulin secretion in ß-cells and Kv2.2 modulates somatostatin release in δ-cells. Development of selective Kv2.1 inhibitors without cross inhibition of Kv2.2 may provide new avenues to promote GSIS for the treatment of type 2 diabetes.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin/metabolism , Shab Potassium Channels/metabolism , Somatostatin/metabolism , Adult , Animals , Arthropod Proteins , Benzamides/pharmacology , Cells, Cultured , Electrophysiological Phenomena , Female , Glucose/pharmacology , Humans , Insulin Secretion , Insulin-Secreting Cells/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Patch-Clamp Techniques , Peptides/pharmacology , Potassium Channel Blockers/pharmacology , Protein Binding , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Shab Potassium Channels/antagonists & inhibitors , Shab Potassium Channels/genetics , Spider Venoms/pharmacology , Young Adult
19.
Am J Physiol Endocrinol Metab ; 303(2): E265-71, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22621866

ABSTRACT

Glucagon-like peptide-1 (GLP-1) and oxyntomodulin (OXM) are peptide hormones secreted postprandially from the gut that stimulate insulin secretion in a glucose-dependent manner. OXM activates both the GLP-1 receptor (GLP1R) and the glucagon receptor (GCGR). It has been suggested that OXM acutely modulates glucose metabolism solely through GLP1R agonism. Because OXM activates the GLP1R with lower affinity than GLP-1, we generated a peptide analog (Q→E, OXMQ3E) that does not exhibit glucagon receptor agonist activity but retains the same affinity as OXM for GLP1R. We compared the effects of OXM and OXMQ3E in a glucose tolerance test and, to better characterize the effect on glucose metabolism, we performed controlled infusions of OXM or OXMQ3E during a hyperglycemic clamp performed in wild-type, Glp1r(-/-), and Gcgr(-/-) mice. Our findings show that OXM, but not OXMQ3E, activates the GCGR in vivo. Second, OXM and OXMQ3E improve glucose tolerance following an acute glucose challenge and during a hyperglycemic clamp in mice. Finally, OXM infusion during a glucose clamp reduces the glucose infusion rate (GIR) despite a simultaneous increase in insulin levels in Glp1r(-/-) mice, whereas OXM and OXMQ3E increase GIR to a similar extent in Gcgr(-/-) mice. In conclusion, activation of the GCGR seems to partially attenuate the acute beneficial effects on glucose and contributes to the insulinotropic action of oxyntomodulin.


Subject(s)
Glucagon-Like Peptide 1/pharmacology , Glucose/metabolism , Oxyntomodulin/pharmacology , Animals , Blood Glucose/drug effects , Glucagon-Like Peptide-1 Receptor , Glucose Clamp Technique , Glucose Tolerance Test , Insulin/blood , Male , Mice , Mice, Inbred C57BL , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism
20.
J Lipid Res ; 53(1): 51-65, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22021650

ABSTRACT

In an attempt to understand the applicability of various animal models to dyslipidemia in humans and to identify improved preclinical models for target discovery and validation for dyslipidemia, we measured comprehensive plasma lipid profiles in 24 models. These included five mouse strains, six other nonprimate species, and four nonhuman primate (NHP) species, and both healthy animals and animals with metabolic disorders. Dyslipidemic humans were assessed by the same measures. Plasma lipoprotein profiles, eight major plasma lipid fractions, and FA compositions within these lipid fractions were compared both qualitatively and quantitatively across the species. Given the importance of statins in decreasing plasma low-density lipoprotein cholesterol for treatment of dyslipidemia in humans, the responses of these measures to simvastatin treatment were also assessed for each species and compared with dyslipidemic humans. NHPs, followed by dog, were the models that demonstrated closest overall match to dyslipidemic humans. For the subset of the dyslipidemic population with high plasma triglyceride levels, the data also pointed to hamster and db/db mouse as representative models for practical use in target validation. Most traditional models, including rabbit, Zucker diabetic fatty rat, and the majority of mouse models, did not demonstrate overall similarity to dyslipidemic humans in this study.


Subject(s)
Disease Models, Animal , Dyslipidemias/blood , Lipids/blood , Animals , Cricetinae , Dogs , Dyslipidemias/drug therapy , Fatty Acids/blood , Humans , Mice , Primates , Simvastatin/therapeutic use , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...