Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Chempluschem ; 87(12): e202200313, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36479609

ABSTRACT

2-Hydroxy-1-naphthaldehyde oxime was oxidized by AgO (or Ag2 O), in presence of N-methyl morpholine N-oxide (NMMO), to the title spiro adduct-dimer (±)-Spiro{naphthalene-1(2H),4'-(naphtho[2',1':2,3]pyrano[4,5-c]furazan)}-2-one-11'-oxide by a Diels-Alder(D-A) type self-cycloaddition, through the agency of an o-naphthoquinone nitrosomethide (o-NQM). Moreover, 2-hydroxy-8-methoxy-1-naphthaldehyde oxime was prepared and subjected to the same oxidation conditions. Its sterically guided result, 9-methoxynaphtho[1,2-d]isoxazole, was isolated, instead of the expected spiro adduct. The peri intramolecular H bonding in the oxime is considered to have a key contribution to the outcome. Geometry and energy features of the oxidant- and stereo-guided selectivity of both oxidation outcomes have been explored by DFT, perturbation theory and coupled cluster calculations. The reaction free energy of the D-A intermolecular cycloaddition is calculated at -82.0 kcal/mol, indicating its predominance over the intramolecular cyclization of ca. -37.6 kcal/mol. The cycloaddition is facilitated by NMMO through dipolar interactions and hydrogen bonding with both metal complexes and o-NQM. The 8(peri)-OMe substitution of the reactant oxime sterically impedes formation of the spiro adduct, instead it undergoes a more facile cyclodehydration to the isoxazole structure by ca. 4.9 kcal/mol.

2.
Front Chem ; 10: 951261, 2022.
Article in English | MEDLINE | ID: mdl-36105305

ABSTRACT

We study the performance of eleven reactive force fields (ReaxFF), which can be used to study sp2 carbon systems. Among them a new hybrid ReaxFF is proposed combining two others and introducing two different types of C atoms. The advantages of that potential are discussed. We analyze the behavior of ReaxFFs with respect to 1) the structural and mechanical properties of graphene, its response to strain and phonon dispersion relation; 2) the energetics of (n, 0) and (n, n) carbon nanotubes (CNTs), their mechanical properties and response to strain up to fracture; 3) the energetics of the icosahedral C60 fullerene and the 40 C40 fullerene isomers. Seven of them provide not very realistic predictions for graphene, which made us focusing on the remaining, which provide reasonable results for 1) the structure, energy and phonon band structure of graphene, 2) the energetics of CNTs versus their diameter and 3) the energy of C60 and the trend of the energy of the C40 fullerene isomers versus their pentagon adjacencies, in accordance with density functional theory (DFT) calculations and/or experimental data. Moreover, the predicted fracture strain, ultimate tensile strength and strain values of CNTs are inside the range of experimental values, although overestimated with respect to DFT. However, they underestimate the Young's modulus, overestimate the Poisson's ratio of both graphene and CNTs and they display anomalous behavior of the stress - strain and Poisson's ratio - strain curves, whose origin needs further investigation.

3.
Phys Chem Chem Phys ; 23(35): 19647-19658, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34524297

ABSTRACT

The chalcogen-bonded homo-cavitand and hetero-cavitand AY+AY' capsules (Y, Y' = Se, Te), as well as their encapsulated complexes with one or two guest molecules have been studied theoretically via density functional theory (DFT), while the 1H NMR spectra of the homo-cavitand encapsulated complexes (in ASe+ASe) have been measured experimentally. There is excellent agreement between theoretical and experimental spectra. In all cases, we found significant 1H upfield shifts which are more intense in the ASe+ASe cage compared to the ATe+ATe and ASe+ATe cages. The non-uniform electron distribution which gives rise to an inherent electric field and a non-zero electric dipole moment of the encapsulated complexes, the induced electric field effects, the magnetic anisotropy which is enhanced due to the polarizability of chalcogen atoms, and the peripheral chains, which are responsible for the solubility of the cages, increase the upfield shifts of 1H of the encapsulated molecules; the peripheral chains lead to an increase of the upfield shifts by up to 1.8 ppm for H of the rim and up to 1.2 ppm for the terminal H in the interior of the cage. Hence, substantial 1H upfield chemical shifts of the guests in these capsules are consequences of (i) the enhanced aromaticity of the walls of the capsules due to the polarizability of chalcogen atoms, (ii) the induced and inherent electric field effects, and (iii) the peripheral chains.

4.
Chemphyschem ; 21(19): 2187-2195, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32725859

ABSTRACT

We present a theoretical study of chalcogen bonded container capsules (AX +AX ) where X=O, S, Se, and Te, and their encapsulation complexes with n-C9 H20 (n-C9 H20 @AX +AX ). Both Se and Te encapsulation complexes have significant experimental and computed binding energies, analogous to the hydrogen bonded counterparts, while the S and O capsules and their encapsulation complexes show only weak binding energies, which are attributed to different types of bonding: chalcogen S⋅⋅⋅N bonds for S-capsules and π-π stacking and weak hydrogen bonds for the O case. All AX +AX and C9 H20 @AX +AX present unusually high magnetic anisotropies in their interiors. The 1 H NMR spectra of the encapsulation complexes display the proton signals of the encapsulated n-nonane highly upfield shifted, in agreement with the available experimental data for the Se capsule. We found that different factors contribute to the observed magnetic anisotropy of the capsule's interior: for the Te capsule the most important factor is Te's large polarizability; for the O analogue the inductive effects produced by the electronegative nature of the O and N heteroatoms; and for the S and Se capsules, the polarizability of the heteroatoms combines with electric field effects.

5.
Chem Commun (Camb) ; 56(51): 6945-6948, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32436496

ABSTRACT

A metallo-cavitand (1-2Pd) showed unprecedented binding selectivity and sequestration of p-functionalized toluene isomers in water. The host-guest complexation was studied using 1H and COSY NMR methods and xylene-isomer complexes were examined by using DFT calculations. A liquid-liquid extraction scheme was developed for the separation of p-functionalized toluenes.

6.
J Am Chem Soc ; 142(12): 5876-5883, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32125842

ABSTRACT

Supramolecular capsules are desirable containers for the study of molecular behavior in small spaces and offer applications in transport, catalysis, and material science. We report here the use of chalcogen bonding to form container assemblies that are stable in water. Cavitands 1-3 functionalized with 2,1,3-benzoselenadiazole walls were synthesized in good yield from resorcin[4]arenes. The solid-state single-crystal X-ray structure of 3 showed a dimeric assembly cemented together through multiple Se···N chalcogen bonds. Binding of hydrophobic and amphiphilic guests in D2O was investigated by 1H NMR methods and revealed host-guest assemblies of 1:1, 2:1, and 2:2 stoichiometries. Small guests such as n-hexane or cyclohexane assembled as 2:2 capsular complexes, larger guests like cyclohexane carboxylic acid or cyclodecane formed 1:1 cavitand complexes, and longer linear guests like n-dodecane, cyclohexane carboxylic acid anhydride, and amides created 2:1 capsular complexes. The 2:1 complex of the capsule with cyclohexane carboxylic acid anhydride was stable over 2 weeks, showing that the seam of chalcogen bonds is "waterproof". Selective uptake of cyclohexane over benzene and methyl cyclohexane over toluene was observed in aqueous solution with the capsule. Hydrophobic forces and hydrogen-bonding attractions between guest molecules such as 3-methylbutanoic acid stabilized the assemblies in the presence of the competing effects of water. The high polarizability and modest electronegativity of Se provide a capsule lining complementary to guest C-H bonds. The 2,1,3-benzoselenadiazole walls impart an unusually high magnetic anisotropy to the capsule environment, which is supported by density functional theory calculations.

7.
ACS Appl Mater Interfaces ; 12(1): 1120-1131, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31829007

ABSTRACT

Photovoltaic devices based on organic semiconductors and organo-metal halide perovskites have not yet reached the theoretically predicted power conversion efficiencies while they still exhibit poor environmental stability. Interfacial engineering using suitable materials has been recognized as an attractive approach to tackle the above issues. We introduce here a zinc porphyrin-triazine-bodipy donor-π bridge-acceptor dye as a universal electron transfer mediator in both organic and perovskite solar cells. Thanks to its "push-pull" character, this dye enhances electron transfer from the absorber layer toward the electron-selective contact, thus improving the device's photocurrent and efficiency. The direct result is more than 10% average power conversion efficiency enhancement in both fullerene-based (from 8.65 to 9.80%) and non-fullerene-based (from 7.71 to 8.73%) organic solar cells as well as in perovskite ones (from 14.56 to 15.67%), proving the universality of our approach. Concurrently, by forming a hydrophobic network on the surface of metal oxide substrates, it improves the nanomorphology of the photoactive overlayer and contributes to efficiency stabilization. The fabricated devices of both kinds preserved more than 85% of their efficiency upon exposure to ambient conditions for more than 600 h without any encapsulation.

8.
Proc Natl Acad Sci U S A ; 116(36): 17648-17653, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31427538

ABSTRACT

We describe here the effects of metal complexation on the molecular recognition behavior of cavitands with quinoxaline walls. The nitrogen atoms of the quinoxalines are near the upper rim of the vase-like shape and treatment with Pd(II) gave 2:1 metal:cavitand derivatives. Characterization by 1H, 13C NMR spectroscopy, HR ESI-MS, and computations showed that the metals bridged adjacent quinoxaline panels and gave cavitands with C2v symmetry. Both water-soluble and organic-soluble versions were prepared and their host/guest complexes with alkanes, alcohols, acids, and diols (up to C12) were studied by 1H NMR spectroscopy. Analysis of the binding behavior indicated that the metals rigidified the walls of the receptive vase conformation and enhanced the binding of hydrophobic and even water-soluble guests, compared to related cavitands reported previously. The results demonstrated that the conformational dynamics of the cavitand were slowed by the coordination of Pd(II) and stabilized the host's complexes.

9.
Angew Chem Int Ed Engl ; 57(46): 15091-15095, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30246478

ABSTRACT

Described herein is the behavior of α,ω-dienes sequestered within cavitands in aqueous (D2 O) solution. Hydrophobic forces drive the dienes into the cavitands in conformations that best fill the available space. Shorter dienes (C9 and C10) bind in compressed conformations that tumble rapidly in the cavitands. Longer dienes induce capsule formation between cavitands with self-complementary hydrogen bonding sites, where the dienes exist in extended conformations. In cavitands unable to form capsules, longer dienes adopt folded structures. The wider open ends allow the synthesis of medium-sized cycloalkenes by ring-closing metathesis reactions with the Hoveyda-Grubbs-II catalyst. Yields of cycloheptene and cyclooctene were enhanced by the chaperones in water when compared with reactions of the free dienes in either aqueous media or chloroform, and even cyclononene could be prepared within the cavitand.

10.
ACS Appl Mater Interfaces ; 10(24): 20728-20739, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29785853

ABSTRACT

In the present work, we effectively modify the TiO2 electron transport layer of organic solar cells with an inverted architecture using appropriately engineered porphyrin molecules. The results show that the optimized porphyrin modifier bearing two carboxylic acids as the anchoring groups and a triazine electron-withdrawing spacer significantly reduces the work function of TiO2, thereby reducing the electron extraction barrier. Moreover, the lower surface energy of the porphyrin-modified substrate results in better physical compatibility between the latter and the photoactive blend. Upon employing porphyrin-modified TiO2 electron transport layers in PTB7:PC71BM-based organic solar cells we obtained an improved average power conversion efficiency up to 8.73%. Importantly, porphyrin modification significantly increased the lifetime of the devices, which retained 80% of their initial efficiency after 500 h of storage in the dark. Because of its simplicity and efficacy, this approach should give tantalizing glimpses and generate an impact into the potential of porphyrins to facilitate electron transfer in organic solar cells and related devices.

11.
ACS Omega ; 3(8): 10008-10018, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459129

ABSTRACT

Here, we use a simple and effective method to accomplish energy level alignment and thus electron injection barrier control in organic light emitting diodes (OLEDs) with a conventional architecture based on a green emissive copolymer. In particular, a series of functionalized zinc porphyrin compounds bearing π-delocalized triazine electron withdrawing spacers for efficient intramolecular electron transfer and different terminal groups such as glycine moieties in their peripheral substitutes are employed as thin interlayers at the emissive layer/Al (cathode) interface to realize efficient electron injection/transport. The effects of spatial (i.e., assembly) configuration, molecular dipole moment and type of peripheral group termination on the optical properties and energy level tuning are investigated by steady-state and time-resolved photoluminescence spectroscopy in F8BT/porphyrin films, by photovoltage measurements in OLED devices and by surface work function measurements in Al electrodes modified with the functionalized zinc porphyrins. The performance of OLEDs is significantly improved upon using the functionalized porphyrin interlayers with the recorded luminance of the devices to reach values 1 order of magnitude higher than that of the reference diode without any electron injection/transport interlayer.

12.
Photochem Photobiol Sci ; 16(4): 596-605, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28165094

ABSTRACT

The liquid exfoliation of graphite to few layered graphene sheets together with the non-covalent supramolecular functionalization of exfoliated graphene by the synthesized N,N'-di(2-ethylhexyl)-1-(N''''-methylpiperazin-N'''-yl)perylene-3,4,9,10-tetracarboxydiimide (Pip-PDI) is reported. The aromatic Pip-PDI has the ability to non-covalently interact with the exfoliated graphene sheets, stabilizing them and preventing their reassembly. On the other hand, the presence of the piperazine moiety on the bay position of the PDI core makes it an ideal electron donor, nicely coupled with the electron accepting exfoliated graphene, hence, forming a novel donor-acceptor nanoensemble, which was characterized by complementary spectroscopic and microscopy techniques. Theoretical calculations predicted the absence of a meaningful charge-separated state within the Pip-PDI/graphene ensemble, which was also proven by time-resolved fluorescence and transient absorption measurements.

13.
Phys Chem Chem Phys ; 18(47): 32132-32145, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27847950

ABSTRACT

In the present work, we examine the possibility of a benzo-18-crown-6 ether of styrylquinoline molecule (1) in acetonitrile solvent to act as a sensor for the Ca++ cation and as a molecular logical gate. DFT and TDDFT calculations are carried out using the M06-2X and the PBE0 functionals. The quinoline moiety is an electron donor and an H+ receptor, while the crown ether is a Ca++ receptor forming host-guest complexes with Ca++. The calculations show that there are 8 thermally stable forms, i.e., trans and cis isomers of neutral (1), protonated (1H+), complexed with Ca++ (1Ca++), and both protonated and Ca++ complexed (1H+Ca++), with different absorption and emission spectra, and which can be interconverted from one form to another. The addition of H+ and/or Ca++ to 1 results in variation of the oscillator strength of the major absorption and emission peaks as well as in significant shifts of the major absorption and emission peaks including shifting from the vis spectral area to UV and vice versa. Consequently, 1 is a candidate for a sensor for the Ca++ cation. Furthermore it is shown that 1 can act as a molecular optical switch owing to its ability to be reversibly protonated and/or Ca++ complexed with substantial accompanying differences in the spectral properties. Similarly, 1 can be used as a sensor molecular logic gate, in which using H+ and Ca++ and irradiation as input, the emission output at 500, 470, 430, and 407 nm can be utilized as output to build AND, NOR, XOR, XNOR, INHIBIT, and IMPLICATION logic gates.

14.
Chem Commun (Camb) ; 51(99): 17604-6, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-26482864

ABSTRACT

Encapsulation of amphiphilic guests in a water-soluble cavitand is enhanced by the addition of hexafluoroisopropanol (HFIP). While binding of n-alkanes in cavitands in HFIP/D2O mixtures was similar to that observed in 100% D2O, the binding of guests with terminal polar groups was quite different. Several α,ω-bolaamphiphiles: alkyldiols (C10-C12), a dinitrile (C14) and a diacid (C16) became encapsulated in HFIP/D2O solutions. As little as 15% HFIP v/v in D2O moves the guest from cavitand to the dimeric capsule. The unusual binding of polar functional groups inside the confined space is deduced from NMR COSY spectra and supported by DFT calculations. Alkane guests are also encapsulated in 100% HFIP.

15.
Phys Chem Chem Phys ; 17(1): 428-33, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25407888

ABSTRACT

Density functional theory calculations have been employed to determine optimized geometries for different (Cu2O)n clusters for n = 1 to 6, 12 and 18. The results show the formation of (Cu2O)n rings for n ≥ 2, while (Cu2O)n nanobarrels have been determined for n = 12 and for n = 18. Adsorption of H2O on the (Cu2O)n clusters occurs preferentially by interaction of the water O with outer Cu atoms. Absorption spectra calculated by time dependent density functional theory show that in all cases charge-transfer excitations from occupied orbitals of the (Cu2O)n cluster to a Rydberg orbital of H2O contribute to the character of the singlet excited states calculated at energies starting at about 2.6 eV, with increasing contribution found at higher excitation energies. Configuration interaction calculations on selected (Cu2O)n-H2O complexes determine charge-transfer excitations to contribute significantly to excited states lying at 4.6-6.2 eV above the ground state.

16.
Chem Commun (Camb) ; 50(11): 1362-5, 2014 Feb 09.
Article in English | MEDLINE | ID: mdl-24346115

ABSTRACT

The coordination-driven synthesis of a rhomboid cavitand composed of two different Bodipys and its inclusion complex with 1,3,6,8-tetrasulfopyrene via ionic self-assembly was established by X-ray crystallography. Highly efficient and unidirectional intra-host and guest-to-host energy transfer was demonstrated by femtosecond fluorescence spectroscopy.

17.
Chemistry ; 19(50): 17092-6, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-24222448

ABSTRACT

Encapsulation complexes permit the observation of molecules under conditions of limited motion. Inside capsules, molecular encounters are prolonged, prearranged, and protected from the medium, in contrast to the short-lived and random encounters that occur in bulk solution. Herein, the interaction of α-, ß-, and γ-picolines in a cylindrical capsule is described. Two picolines were taken up, and NMR spectra indicated dynamic combinations of various social isomers. The stabilities of the complexes are interpreted through computational methods. The shape of the space in the capsule allowed the alignment of molecules and revealed delicate, atom-to-atom interactions and attractive forces that elude observation in dilute solution. These weak forces were amplified in the isolated small space of the capsule.


Subject(s)
Isomerism , Picolines/chemistry , Solutions/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
18.
ACS Appl Mater Interfaces ; 5(23): 12346-54, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24195694

ABSTRACT

Herein we introduce the all-organic triphenylsulfonium (TPS) salts cathode interfacial layers (CILs), deposited from their methanolic solution, as a new simple strategy for circumventing the use of unstable low work function metals and obtaining charge balance and high electroluminescence efficiency in polymer light-emitting diodes (PLEDs). In particular, we show that the incorporation of TPS-triflate or TPS-nonaflate at the polymer/Al interface improved substantially the luminous efficiency of the device (from 2.4 to 7.9 cd/A) and reduced the turn-on and operating voltage, whereas an up to 4-fold increase in brightness (∼11 250 cd/m(2) for TPS-triflate and ∼14 682 cd/m(2) for TPS-nonaflate compared to ∼3221 cd/m(2) for the reference device) was observed in poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-2,1',3-thiadiazole)] (F8BT)-based PLEDs. This was mainly attributed to the favorable decrease of the electron injection barrier, as derived from the open-circuit voltage (Voc) measurements, which was also assisted by the conduction of electrons through the triphenylsulfonium salt sites. Density functional theory calculations indicated that the total energy of the anionic (reduced) form of the salt, that is, upon placing an electron to its lowest unoccupied molecular orbital, is lower than its neutral state, rendering the TPS-salts stable upon electron transfer in the solid state. Finally, the morphology optimization of the TPS-salt interlayer through controlling the processing parameters was found to be critical for achieving efficient electron injection and transport at the respective interfaces.

19.
J Am Chem Soc ; 135(37): 13672-5, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-24000791

ABSTRACT

Weak, intermolecular forces are difficult to observe in solution because the molecular encounters are random, short-lived, and overwhelmed by the solvent. In confined spaces such as capsules and the active sites of enzymes or receptors, the encounters are prolonged, prearranged, and isolated from the medium. We report here the application of encapsulation techniques to directly observe halogen bonding. The small volume of the capsule amplifies the concentrations of both donor and acceptor, while the shape of the space permits their proper alignment. The extended lifetime of the encapsulation complex allows the weak interaction to be observed and characterized by conventional NMR methods under conditions in which the interaction would be negligible in bulk solvent.


Subject(s)
Halogens/chemistry , Capsules , Magnetic Resonance Spectroscopy , Molecular Structure
20.
Org Biomol Chem ; 11(34): 5666-72, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-23880956

ABSTRACT

A simple pyridinium-based tripodal chemosensor, 1, effectively recognizes AMP over ATP and ADP through indicator displacement assay (IDA) technique in water at pH 6.4. The good recognition of 1 is due to the better accommodation of AMP at the core of 1 as well as functional interaction involving hydrogen bonding and charge-charge interaction. The sensor 1 also recognizes intracellular AMP.


Subject(s)
Adenosine Monophosphate/analysis , Fluorescent Dyes/chemistry , Indicators and Reagents/chemistry , Pyridinium Compounds/chemistry , Water/chemistry , Cell Line, Tumor , Cell Survival , Humans , Microscopy, Fluorescence , Molecular Structure , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...