Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Org Chem ; 81(23): 11726-11733, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27934455

ABSTRACT

Additions of cysteine thiols to Michael acceptors underpin the mechanism of action of several covalent drugs (e.g., afatinib, osimertinib, ibrutinib, neratinib, and CC-292). Reversible Michael acceptors have been reported in which an additional electron-withdrawing group was added at the α-carbon of a Michael acceptor. We have performed density functional theory calculations to determine why thiol additions to these Michael acceptors are reversible. The α-EWG group stabilizes the anionic transition state and intermediate of the Michael addition, but less intuitively, it destabilizes the neutral adduct. This makes the reverse reaction (elimination) both faster and more thermodynamically favorable. For thiol addition to be reversible, the Michael acceptor must also contain a suitable substituent on the ß-carbon, such as an aryl or branched alkyl group. Computations explain how these structural elements contribute to reversibility and the ability to tune the binding affinities and the residence times of covalent inhibitors.


Subject(s)
Cysteine/chemistry , Drug Design , Sulfhydryl Compounds/chemistry , Thermodynamics , Binding Sites , Kinetics
2.
J Chem Theory Comput ; 12(4): 2066-78, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27010480

ABSTRACT

Epidermal growth factor receptor (EGFR) inhibitors interrupt EGFR-dependent cellular signaling pathways that lead to accelerated tumor growth and proliferation. Mutation of a threonine in the inhibitor binding pocket, known as the "gatekeeper", to methionine (T790M) confers acquired resistance to several EGFR-selective inhibitors. We studied interactions between EGFR inhibitors and the gatekeeper residues of the target protein. Thermodynamic integration (TI) with Amber14 indicates that the binding energies of gefitinib and AEE788 to the active state of the T790M mutant EGFR is 3 kcal/mol higher than to the wild type (WT), whereas ATP binding energy to the mutant is similar to the WT. Using metadynamics MD simulations with NAMD v2.9, the conformational equilibrium between the inactive resting state and the catalytically competent activate state was determined for the WT EGFR. When combined with the results obtained by Sutto and Gervasio, our simulations showed that the T790M point mutation lowers the free energy of the active state by 5 kcal/mol relative to the inactive state of the enzyme. Relative to the WT, the T790M mutant binds gefitinib more strongly. The T790M mutation is nevertheless resistant due to its increased binding of ATP. By contrast, the binding of AEE788 to the active state causes a conformational change in the αC-helix adjacent to the inhibitor binding pocket, that results in a 2 kcal/mol energy penalty. The energy penalty explains why the binding of AEE788 to the T790M mutant is unfavorable relative to binding to WT EGFR. These results establish the role of the gatekeeper mutation on inhibitor selectivity. Additional molecular dynamics (MD) simulations, TI, and metadynamics MD simulations reveal the origins of the changes in binding energy of WT and mutants.


Subject(s)
ErbB Receptors/genetics , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Catalytic Domain/drug effects , ErbB Receptors/chemistry , Gefitinib , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Point Mutation , Protein Conformation/drug effects , Thermodynamics
3.
Neuro Oncol ; 17 Suppl 6: vi1-26, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26403167

ABSTRACT

Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward.


Subject(s)
Antineoplastic Agents/therapeutic use , Central Nervous System Neoplasms/drug therapy , Drug Discovery , Glioma/drug therapy , Medulloblastoma/drug therapy , Animals , Clinical Trials as Topic , Disease Models, Animal , Disease-Free Survival , Endpoint Determination , Humans , Treatment Outcome
4.
Mol Cancer Ther ; 13(6): 1468-79, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24723450

ABSTRACT

Patients with non-small cell lung carcinoma (NSCLC) with activating mutations in epidermal growth factor receptor (EGFR) initially respond well to the EGFR inhibitors erlotinib and gefitinib. However, all patients relapse because of the emergence of drug-resistant mutations, with T790M mutations accounting for approximately 60% of all resistance. Second-generation irreversible EGFR inhibitors are effective against T790M mutations in vitro, but retain affinity for wild-type EGFR (EGFR(WT)). These inhibitors have not provided compelling clinical benefit in T790M-positive patients, apparently because of dose-limiting toxicities associated with inhibition of EGFR(WT). Thus, there is an urgent clinical need for therapeutics that overcome T790M drug resistance while sparing EGFR(WT). Here, we describe a lead optimization program that led to the discovery of four potent irreversible 2,4-diaminopyrimidine compounds that are EGFR mutant (EGFR(mut)) selective and have been designed to have low affinity for EGFR(WT). Pharmacokinetic and pharmacodynamic studies in H1975 tumor-bearing mice showed that exposure was dose proportional resulting in dose-dependent EGFR modulation. Importantly, evaluation of normal lung tissue from the same animals showed no inhibition of EGFR(WT). Of all the compounds tested, compound 3 displayed the best efficacy in EGFR(L858R/T790M)-driven tumors. Compound 3, now renamed CO-1686, is currently in a phase I/II clinical trial in patients with EGFR(mut)-advanced NSCLC that have received prior EGFR-directed therapy.


Subject(s)
4-Aminopyridine/analogs & derivatives , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/metabolism , Neoplasm Recurrence, Local/drug therapy , 4-Aminopyridine/administration & dosage , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Clinical Trials as Topic , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Humans , In Vitro Techniques , Mice , Mutation , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Xenograft Model Antitumor Assays
5.
Cancer Discov ; 3(12): 1404-15, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24065731

ABSTRACT

UNLABELLED: Patients with non-small cell lung cancer (NSCLC) with activating EGF receptor (EGFR) mutations initially respond to first-generation reversible EGFR tyrosine kinase inhibitors. However, clinical efficacy is limited by acquired resistance, frequently driven by the EGFR(T790M) mutation. CO-1686 is a novel, irreversible, and orally delivered kinase inhibitor that specifically targets the mutant forms of EGFR, including T790M, while exhibiting minimal activity toward the wild-type (WT) receptor. Oral administration of CO-1686 as single agent induces tumor regression in EGFR-mutated NSCLC tumor xenograft and transgenic models. Minimal activity of CO-1686 against the WT EGFR receptor was observed. In NSCLC cells with acquired resistance to CO-1686 in vitro, there was no evidence of additional mutations or amplification of the EGFR gene, but resistant cells exhibited signs of epithelial-mesenchymal transition and demonstrated increased sensitivity to AKT inhibitors. These results suggest that CO-1686 may offer a novel therapeutic option for patients with mutant EGFR NSCLC. SIGNIFICANCE: We report the preclinical development of a novel covalent inhibitor, CO-1686, that irreversibly and selectively inhibits mutant EGFR, in particular the T790M drug-resistance mutation, in NSCLC models. CO-1686 is the fi rst drug of its class in clinical development for the treatment of T790M-positive NSCLC, potentially offering potent inhibition of mutant EGFR while avoiding the on-target toxicity observed with inhibition of the WT EGFR.


Subject(s)
Acrylamides/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Acrylamides/administration & dosage , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/metabolism , Female , HEK293 Cells , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Molecular Targeted Therapy , Mutant Proteins/antagonists & inhibitors , Mutant Proteins/metabolism , Protein Kinase Inhibitors/administration & dosage , Pyrimidines/administration & dosage , Xenograft Model Antitumor Assays
6.
J Pharmacol Exp Ther ; 346(2): 219-28, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23709115

ABSTRACT

Targeted therapies that suppress B cell receptor (BCR) signaling have emerged as promising agents in autoimmune disease and B cell malignancies. Bruton's tyrosine kinase (Btk) plays a crucial role in B cell development and activation through the BCR signaling pathway and represents a new target for diseases characterized by inappropriate B cell activity. N-(3-(5-fluoro-2-(4-(2-methoxyethoxy)phenylamino)pyrimidin-4-ylamino)phenyl)acrylamide (CC-292) is a highly selective, covalent Btk inhibitor and a sensitive and quantitative assay that measures CC-292-Btk engagement has been developed. This translational pharmacodynamic assay has accompanied CC-292 through each step of drug discovery and development. These studies demonstrate the quantity of Btk bound by CC-292 correlates with the efficacy of CC-292 in vitro and in the collagen-induced arthritis model of autoimmune disease. Recently, CC-292 has entered human clinical trials with a trial design that has provided rapid insight into safety, pharmacokinetics, and pharmacodynamics. This first-in-human healthy volunteer trial has demonstrated that a single oral dose of 2 mg/kg CC-292 consistently engaged all circulating Btk protein and provides the basis for rational dose selection in future clinical trials. This targeted covalent drug design approach has enabled the discovery and early clinical development of CC-292 and has provided support for Btk as a valuable drug target for B-cell mediated disorders.


Subject(s)
Acrylamides/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Acrylamides/pharmacokinetics , Acrylamides/therapeutic use , Agammaglobulinaemia Tyrosine Kinase , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Double-Blind Method , Humans , Mice , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Receptors, Antigen, B-Cell/metabolism , Signal Transduction
7.
J Med Chem ; 56(3): 712-21, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23360348

ABSTRACT

PI3Kα has been identified as an oncogene in human tumors. By use of rational drug design, a targeted covalent inhibitor 3 (CNX-1351) was created that potently and specifically inhibits PI3Kα. We demonstrate, using mass spectrometry and X-ray crystallography, that the selective inhibitor covalently modifies PI3Kα on cysteine 862 (C862), an amino acid unique to the α isoform, and that PI3Kß, -γ, and -δ are not covalently modified. 3 is able to potently (EC(50) < 100 nM) and specifically inhibit signaling in PI3Kα-dependent cancer cell lines, and this leads to a potent antiproliferative effect (GI(50) < 100 nM). A covalent probe, 8 (CNX-1220), which selectively bonds to PI3Kα, was used to investigate the duration of occupancy of 3 with PI3Kα in vivo. This is the first report of a PI3Kα-selective inhibitor, and these data demonstrate the biological impact of selectively targeting PI3Kα.


Subject(s)
Drug Discovery , Isoenzymes/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Nuclear Magnetic Resonance, Biomolecular , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/chemistry , Signal Transduction
8.
J Org Chem ; 76(12): 5074-81, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21574592

ABSTRACT

CBS-QB3 enthalpies of reaction have been computed for the conjugate additions of MeSH to six α,ß-unsaturated ketones. Compared with addition to methyl vinyl ketone, the reaction becomes 1-3 kcal mol(-1) less exothermic when an α-Me, ß-Me, or ß-Ph substituent is present on the C=C bond. The lower exothermicity for the substituted enones occurs because the substituted reactant is stabilized more by hyperconjugation or conjugation than the product is stabilized by branching. Substituent effects on the activation energies for the rate-determining step of the thiol addition (reaction of the enone with MeS(-)) were also computed. Loss of reactant stabilization, and not steric hindrance, is the main factor responsible for controlling the relative activation energies in the gas phase. The substituent effects are further magnified in solution; in water (simulated by CPCM calculations), the addition of MeS(-) to an enone is disfavored by 2-6 kcal mol(-1) when one or two methyl groups are present on the C=C bond (ΔΔG(‡)). The use of CBS-QB3 gas-phase energies in conjunction with CPCM solvation corrections provides kinetic data in good agreement with experimental substituent effects. When the energetics of the thiol additions were calculated with several popular density functional theory and ab initio methods (B3LYP, MPW1PW91, B1B95, PBE0, B2PLYP, and MP2), some substantial inaccuracies were noted. However, M06-2X (with a large basis set), B2PLYP-D, and SCS-MP2 gave results within 1 kcal mol(-1) of the CBS-QB3 benchmark values.


Subject(s)
Ketones/chemistry , Phase Transition , Sulfhydryl Compounds/chemistry , Hydrogenation , Molecular Structure , Solutions/chemistry , Thermodynamics
9.
Nat Rev Drug Discov ; 10(4): 307-17, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21455239

ABSTRACT

Covalent drugs have proved to be successful therapies for various indications, but largely owing to safety concerns, they are rarely considered when initiating a target-directed drug discovery project. There is a need to reassess this important class of drugs, and to reconcile the discordance between the historic success of covalent drugs and the reluctance of most drug discovery teams to include them in their armamentarium. This review surveys the prevalence and pharmacological advantages of covalent drugs, discusses how potential risks and challenges may be addressed through innovative design, and presents the broad opportunities provided by targeted covalent inhibitors.


Subject(s)
Drug Delivery Systems , Drug Design , Pharmaceutical Preparations/metabolism , Animals , Drug Discovery/methods , Drug-Related Side Effects and Adverse Reactions , Humans , Pharmaceutical Preparations/chemistry , Structure-Activity Relationship
10.
Nat Chem Biol ; 7(1): 22-4, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21113170

ABSTRACT

Designing selective inhibitors of proteases has proven problematic, in part because pharmacophores that confer potency exploit the conserved catalytic apparatus. We developed a fundamentally different approach by designing irreversible inhibitors that target noncatalytic cysteines that are structurally unique to a target in a protein family. We have successfully applied this approach to the important therapeutic target HCV protease, which has broad implications for the design of other selective protease inhibitors.


Subject(s)
Cysteine Proteinase Inhibitors/therapeutic use , Cysteine/antagonists & inhibitors , Drug Design , Oligopeptides/therapeutic use , Biocatalysis , Biochemistry/methods , Crystallography, X-Ray , Cysteine/metabolism , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , Hepacivirus/growth & development , Oligopeptides/chemistry , Oligopeptides/pharmacology , Virology/methods
11.
Curr Opin Chem Biol ; 14(4): 475-80, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20609616

ABSTRACT

In the past decade tremendous progress has been made toward a new class of therapeutics termed 'targeted covalent drugs', in which structure-based approaches are employed to create small molecules that inactivate their protein target through targeted covalent attachment to a specific cysteine. In the kinase field, this approach is demonstrating promise in overcoming the potency, selectivity, and efficacy challenges currently faced by reversible kinase inhibitors, with several advancing into late stage clinical testing. This design paradigm has been successfully applied to making drug candidates for epidermal growth factor receptor (EGFR), Her2, and Bruton's tyrosine kinase (Btk). Here we review recent pre-clinical and clinical advances with targeted covalent kinase inhibitors, and the potential for broader application of the approach.


Subject(s)
Drug Delivery Systems , Phosphotransferases/chemistry , Phosphotransferases/pharmacology , Computational Biology , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Phosphotransferases/administration & dosage , Structure-Activity Relationship
12.
Curr Opin Chem Biol ; 14(3): 421-7, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20457000

ABSTRACT

Structural modification of naturally occurring beta-lactams and beta-lactones is a highly effective strategy for generating drugs for treating bacterial infections, cancer, obesity, and hyperlipidemia. These drugs acylate catalytic amino acids (serine, threonine, or cysteine) in enzyme targets such as penicillin-binding proteins (PBPs), beta-lactamases, lipases, HMG-CoA reductase, fatty acid synthetase, and the 20S proteasome. Optimally performing drugs combine features of high target affinity, chemoselective reactivity, and high stability of the acylated target protein. This review provides a perspective on these two classes of acylating agents and summarizes recent advances in mechanism and structure-based design of acylating drugs.


Subject(s)
Drug Discovery/methods , Lactones/chemistry , beta-Lactams/chemistry , Acylation/drug effects , Animals , Humans , Lactones/metabolism , Penicillin-Binding Proteins/antagonists & inhibitors , Structure-Activity Relationship , beta-Lactamase Inhibitors , beta-Lactams/metabolism
13.
J Med Chem ; 49(24): 7132-9, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17125265

ABSTRACT

Novel tricyclic imidazoline antagonists of the adenosine A1 receptor are described. For key compounds, the selectivity level over other adenosine receptor subtypes is examined along with their in vivo effects in a rat diuresis model. Compound 14, the (R)-isomer of 7,8-dihydro-8-ethyl-2-(4-bicyclo[2.2.2]octan-1-ol)-4-propyl-1H-imidazo[2,1-i]purin-5(4H)-one, is a particularly potent adenosine A1 receptor antagonist with good selectivity over the other three adenosine receptor subtypes: A1 (human) Ki=22 nM; A2A (human) Ki=4400 nM; A2B (human) Ki=580 nM; A3 (human) Ki>or=10,000 nM. Imidazoline 14 is a competitive adenosine A1 receptor antagonist with a pA2 value of 8.88 and is highly soluble in water (>100 mg/mL). In addition, it has an oral bioavailability of 84% and an oral half-life of 3.8 h in rats. When orally administered in a rat diuresis model, compound 14 promoted sodium excretion (ED50=0.01 mg/kg). This level of efficacy is comparable to that of BG9928, a selective adenosine A1 receptor antagonist that is currently in clinical trials as a treatment for congestive heart failure. Additional modifications to 14 also showed that the bridgehead hydroxyl group could be replaced with a propionic acid (compound 36) without a significant loss in binding affinity or in vivo activity.


Subject(s)
Adenosine A1 Receptor Antagonists , Bridged Bicyclo Compounds/chemical synthesis , Heterocyclic Compounds, 3-Ring/chemical synthesis , Imidazolines/chemical synthesis , Purines/chemical synthesis , Administration, Oral , Animals , Biological Availability , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/pharmacology , Cerebral Cortex/metabolism , Corpus Striatum/metabolism , Half-Life , Heart Atria/drug effects , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Imidazolines/pharmacokinetics , Imidazolines/pharmacology , In Vitro Techniques , Natriuresis/drug effects , Purines/pharmacokinetics , Purines/pharmacology , Radioligand Assay , Rats , Receptors, Adenosine A2/metabolism , Solubility , Stereoisomerism , Structure-Activity Relationship
14.
J Med Chem ; 49(24): 7119-31, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17125264

ABSTRACT

In the search for a selective adenosine A1 receptor antagonist with greater aqueous solubility than the compounds currently in clinical trials as diuretics, a series of 1,4-substituted 8-cyclohexyl and 8-bicyclo[2.2.2]octylxanthines were investigated. The binding affinities of a variety of cyclohexyl and bicyclo[2.2.2]octylxanthines for the rat and human adenosine A1, A2A, A2B, and A3 receptors are presented. Bicyclo[2.2.2]octylxanthine 16 exhibited good pharmaceutical properties and in vivo activity in a rat diuresis model (ED50=0.3 mg/kg po). Optimization of the bridgehead substituent led to propionic acid 29 (BG9928), which retained high potency (hA1, Ki=7 nM) and selectivity for the adenosine A1 receptor (915-fold versus adenosine A2A receptor; 12-fold versus adenosine A2B receptor) with improved oral efficacy in the rat diuresis model (ED50=0.01 mg/kg) as well as high oral bioavailability in rat, dog, and cynomolgus monkey.


Subject(s)
Adenosine A1 Receptor Antagonists , Xanthines/chemical synthesis , Administration, Oral , Animals , Biological Availability , Brain/metabolism , Cell Line , Cricetinae , Cricetulus , Diuresis/drug effects , Dogs , Heart Atria/drug effects , Humans , In Vitro Techniques , Macaca fascicularis , Male , Radioligand Assay , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Xanthines/pharmacokinetics , Xanthines/pharmacology
15.
Bioorg Med Chem ; 14(11): 3654-61, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16458010

ABSTRACT

During the search for second-generation adenosine A(1) receptor antagonist alternatives to the clinical candidate 8-(3-oxa-tricyclo[3.2.1.0(2,4)]oct-6-yl)-1,3-dipropyl-3,7-dihydro-purine-2,6-dione (BG9719), we developed a series of novel xanthines substituted with norbornyl-lactones that possessed high binding affinities for adenosine A(1) receptors and in vivo activity.


Subject(s)
Adenosine A1 Receptor Antagonists , Bridged Bicyclo Compounds/chemistry , Lactones/chemistry , Norbornanes/pharmacology , Xanthines/pharmacology , Adenosine A2 Receptor Antagonists , Adenosine A3 Receptor Antagonists , Animals , Binding, Competitive/drug effects , Cell Line , Humans , Ligands , Molecular Structure , Norbornanes/chemical synthesis , Norbornanes/chemistry , Rats , Stereoisomerism , Structure-Activity Relationship , Xanthines/chemical synthesis , Xanthines/chemistry
16.
Bioconjug Chem ; 17(1): 179-88, 2006.
Article in English | MEDLINE | ID: mdl-16417267

ABSTRACT

PEGylation of IFN-alpha has been used successfully to improve the pharmacokinetic properties and efficacy of the drug. To prepare a PEGylated form of human interferon-beta-1a (IFN-beta-1a) suitable for testing in vivo, we have synthesized 20 kDa mPEG-O-2-methylpropionaldehyde and used it to modify the N-terminal alpha-amino group of the cytokine. The PEGylated protein retained approximately 50% of the activity of the unmodified protein and had significantly improved pharmacokinetic properties following intravenous administration in rats. The clearance and volume of distribution at steady state were reduced approximately 30-fold and approximately 4-fold, respectively, resulting in a significant increase in systemic exposure as determined by the area under the curve. The elimination half-life of the PEGylated protein was approximately 13-fold greater than for the unmodified protein. The unmodified and PEGylated proteins were tested for their ability to inhibit the formation of radially oriented blood vessels entering the periphery of human SK-MEL-1 melanoma tumors in athymic nude homozygous (nu/nu) mice. In a single dose comparison study, administration of 1 x 10(6) units of unmodified IFN-beta-1a resulted in a 29% reduction in vessel number, while 1 x 10(6) units of PEGylated IFN-beta-1a resulted in a 58% reduction. Both treatments resulted in statistically significant reductions in mean vessel number as compared to the vehicle (control)-treated mice, with the PEGylated IFN-beta-1a-treated mice showing a statistically significantly greater reduction in mean vessel number as compared to the unmodified IFN-beta-1a-treated mice. In a multiple versus single dose comparison study, daily administration of 1 x 10(6) units of unmodified IFN-beta-1a for 9 days resulted in a 51% reduction in vessel number, while a single dose of 1 x 10(6) units of the PEGylated protein resulted in a 66% reduction. Both treatments resulted in statistically significant reductions in mean vessel number as compared to the vehicle-treated mice, with the PEGylated IFN-beta-1a-treated mice showing a statistically significantly greater reduction in mean vessel number as compared to the unmodified IFN-beta-1a-treated mice. Therefore, the improved pharmacokinetic properties of the modified protein translated into improved efficacy. Since unmodified IFN-beta is used for the treatment of multiple sclerosis and hepatitis C virus infection, a PEGylated form of the protein such as 20 kDa mPEG-O-2-methylpropionaldehyde-modified IFN-beta-1a may serve as a useful adjunct for the treatment of these diseases. In addition, the antiangiogenic effects of PEGylated IFN-beta-1a may be harnessed for the treatment of certain cancers, either as a sole agent or in combination with other antitumor drugs.


Subject(s)
Aldehydes/therapeutic use , Antiviral Agents/therapeutic use , Interferon-beta/therapeutic use , Melanoma, Experimental/drug therapy , Neovascularization, Pathologic/prevention & control , Polyethylene Glycols/therapeutic use , Aldehydes/chemical synthesis , Aldehydes/pharmacokinetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Encephalomyocarditis virus/drug effects , Female , Half-Life , Humans , Interferon beta-1a , Interferon-beta/chemistry , Interferon-beta/pharmacokinetics , Melanoma, Experimental/blood supply , Melanoma, Experimental/pathology , Metabolic Clearance Rate , Mice , Mice, Nude , Neoplasm Transplantation , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/pharmacokinetics , Rats , Rats, Inbred Lew
17.
Bioorg Med Chem Lett ; 15(21): 4809-13, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16153830

ABSTRACT

Potent and selective antagonists of the adenosine A2A receptor often contain a nitrogen-rich fused-ring heterocyclic core. Replacement of the core with an isomeric ring system has previously been shown to improve target affinity, selectivity, and in vivo activity. This paper describes the preparation, by a novel route, of A2A receptor antagonists containing the [1,2,4]triazolo[1,5-a]pyrazine nucleus, which is isomeric with the [1,2,4]triazolo[1,5-c]pyrimidine core of a series of known A2A antagonists with in vivo activity in animal models of Parkinson's disease.


Subject(s)
Adenosine A2 Receptor Antagonists , Pyrazines/chemical synthesis , Animals , Brain/ultrastructure , Cell Membrane/chemistry , Cell Membrane/metabolism , Disease Models, Animal , Parkinson Disease/drug therapy , Pyrazines/pharmacology , Radioligand Assay , Rats , Structure-Activity Relationship
18.
J Med Chem ; 48(6): 2009-18, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-15771443

ABSTRACT

Piperazine derivatives of 2-furanyl[1,2,4]triazolo[1,5-a][1,3,5]triazine have recently been demonstrated to be potent and selective adenosine A(2a) receptor antagonists with oral activity in rodent models of Parkinson's disease. We have replaced the piperazinyl group with a variety of linear, monocyclic, and bicyclic diamines. Of these diamines, (R)-2-(aminomethyl)pyrrolidine is a particularly potent and selective replacement for the piperazinyl group. With this diamine component, we have been able to prepare numerous analogues with low nanomolar affinity toward the A(2a) receptor and good selectivity with respect to the A(1) receptor (>200-fold in some cases). Selected analogues from this series of [1,2,4]triazolo[1,5-a][1,3,5]triazine have now been shown to be orally active in the mouse catalepsy model.


Subject(s)
Adenosine A2 Receptor Antagonists , Antiparkinson Agents/chemical synthesis , Diamines/chemical synthesis , Pyrrolidines/chemical synthesis , Triazines/chemical synthesis , Triazoles/chemical synthesis , Administration, Oral , Animals , Antiparkinson Agents/chemistry , Antiparkinson Agents/pharmacology , Binding, Competitive , Biological Availability , Catalepsy/drug therapy , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Combinatorial Chemistry Techniques , Diamines/chemistry , Diamines/pharmacology , In Vitro Techniques , Male , Mice , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Stereoisomerism , Triazines/chemistry , Triazines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology
19.
Bioorg Med Chem Lett ; 15(3): 511-5, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15664803

ABSTRACT

A novel [1,2,4]triazolo[1,5-a]pyrazine core was synthesized and coupled with terminal acetylenes. The structure-activity relationship of the alkynes from this novel template was studied for their in vitro and in vivo adenosine A(2A) receptor antagonism. Selected compounds from this series were shown to have potent in vitro and in vivo activities against adenosine A(2A) receptor. Compound 12, in particular, was found to be orally active at 3mg/kg in both a mouse catalepsy model and a 6-hydroxydopamine-lesioned rat model.


Subject(s)
Adenosine A2 Receptor Antagonists , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Administration, Oral , Alkynes/chemistry , Animals , Catalepsy/drug therapy , Cerebral Cortex , Disease Models, Animal , Mice , Oxidopamine , Parkinson Disease/drug therapy , Pyrazines/administration & dosage , Rats , Structure-Activity Relationship , Triazoles/chemical synthesis
20.
J Med Chem ; 47(25): 6218-29, 2004 Dec 02.
Article in English | MEDLINE | ID: mdl-15566292

ABSTRACT

A series of bicyclic piperazine derivatives of triazolotriazine and triazolopyrimidines was synthesized. Some of these analogues show high affinity and excellent selectivity for adenosine A(2a) receptor versus the adenosine A(1) receptor. Structure-activity-relationship (SAR) studies based on octahydropyrrolo[1,2-a]pyrazine and octahydropyrido[1,2-a]pyrazine with various capping groups are reported. Among these analogues, the most potent and selective A(2a) antagonist 26 h has a K(i) value of 0.2 nM and is 16 500-fold selective with respect to the A(1) receptor. Among a number of compounds tested, compounds 21a and 21c exhibited significantly improved metabolic stability. Compounds 21a, 21c, and 18a showed good oral efficacy in rodent catalepsy models of Parkinson's disease.


Subject(s)
Adenosine A2 Receptor Antagonists , Piperazines/chemical synthesis , Pyrimidines/chemical synthesis , Triazines/chemical synthesis , Triazoles/chemical synthesis , Administration, Oral , Animals , Catalepsy/drug therapy , Disease Models, Animal , Drug Stability , In Vitro Techniques , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Parkinson Disease/drug therapy , Piperazines/chemistry , Piperazines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Triazines/chemistry , Triazines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...