Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 6709, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37185591

ABSTRACT

Particle therapy (PT) used for cancer treatment can spare healthy tissue and reduce treatment toxicity. However, full exploitation of the dosimetric advantages of PT is not yet possible due to range uncertainties, warranting development of range-monitoring techniques. This study proposes a novel range-monitoring technique introducing the yet unexplored concept of simultaneous detection and imaging of fast neutrons and prompt-gamma rays produced in beam-tissue interactions. A quasi-monolithic organic detector array is proposed, and its feasibility for detecting range shifts in the context of proton therapy is explored through Monte Carlo simulations of realistic patient models and detector resolution effects. The results indicate that range shifts of [Formula: see text] can be detected at relatively low proton intensities ([Formula: see text] protons/spot) when spatial information obtained through imaging of both particle species are used simultaneously. This study lays the foundation for multi-particle detection and imaging systems in the context of range verification in PT.


Subject(s)
Proton Therapy , Humans , Proton Therapy/methods , Diagnostic Imaging , Protons , Gamma Rays , Radiotherapy Dosage , Monte Carlo Method , Phantoms, Imaging
2.
Diagnostics (Basel) ; 10(9)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872274

ABSTRACT

Iterative reconstruction (IR) is a computed tomgraphy (CT) reconstruction algorithm aiming at improving image quality by reducing noise in the image. During this process, IR also changes the noise properties in the images. To assess how IR algorithms from four vendors affect the noise properties in CT images, an anthropomorphic phantom was scanned and images reconstructed with filtered back projection (FBP), and a medium and high level of IR. Each image acquisition was performed 30 times at the same slice position, to create noise maps showing the inter-image pixel standard deviation through the 30 images. We observed that IR changed the noise properties in the CT images by reducing noise more in homogeneous areas than at anatomical edges between structures of different densities. This difference increased with increasing IR level, and with increasing difference in density between two adjacent structures. Each vendor's IR algorithm showed slightly different noise reduction properties in how much noise was reduced at different positions in the phantom. Users need to be aware of these differences when working with optimization of protocols using IR across scanners from different vendors.

3.
Acta Oncol ; 58(10): 1416-1422, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31364899

ABSTRACT

Background: Children with brain tumors undergoing radiotherapy are at particular risk of radiation-induced morbidity and are therefore routinely considered for proton therapy (PT) to reduce the dose to healthy tissues. The aim of this study was to apply pediatric constraints and normal tissue complication probability (NTCP) models when evaluating the differences between PT and contemporary photon-based radiotherapy, volumetric modulated arc therapy (VMAT). Methods: Forty patients (aged 1-17 years) referred from Norwegian institutions to cranial PT abroad during 2014-2016 were selected for VMAT re-planning using the original CT sets and target volumes. The VMAT and delivered PT plans were compared by dose/volume metrics and NTCP models related to growth hormone deficiency, auditory toxicity, visual impairment, xerostomia, neurocognitive outcome and secondary brain and parotid gland cancers. Results: The supratentorial brain, temporal lobes, hippocampi, hypothalamus, pituitary glands, cochleas, salivary glands, optic nerves and chiasm received lower mean doses from PT. Reductions in population median NTCP were significant for auditory toxicity (VMAT: 3.8%; PT: 0.3%), neurocognitive outcome (VMAT: 3.0 IQ points decline at 5 years post RT; PT: 2.5 IQ points), xerostomia (VMAT: 2.0%; PT: 0.6%), excess absolute risk of secondary cancer of the brain (VMAT: 9.2%; PT: 6.7%) and salivary glands (VMAT: 2.8%; PT:0.5%). Across all patients, 23/38 PT plans had better or comparable estimated risks for all endpoints (within ±10% of the risk relative to VMAT), whereas for 1/38 patients all estimates were better or comparable with VMAT. Conclusions: PT reduced the volumes of normal tissues exposed to radiation, particularly low-to-intermediate dose levels, and this was reflected in lower NTCP. Of the included endpoints, substantial reductions in population medians were seen from the delivered PT plans for auditory complications, xerostomia, and risk of secondary cancers of the brain and salivary glands.


Subject(s)
Brain Neoplasms/radiotherapy , Models, Biological , Organs at Risk/radiation effects , Proton Therapy/adverse effects , Radiation Injuries/epidemiology , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/adverse effects , Adolescent , Child , Child, Preschool , Dose-Response Relationship, Radiation , Female , Humans , Infant , Male , Norway/epidemiology , Photons/adverse effects , Photons/therapeutic use , Probability , Proton Therapy/methods , Radiation Injuries/etiology , Radiation Injuries/prevention & control , Radiometry , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Risk Assessment/methods , Tumor Burden/radiation effects
4.
Sci Rep ; 8(1): 4925, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29563507

ABSTRACT

The prospecting activities for finding new rare earth elements (REE) sources have increased greatly in recent years. One of the main discoveries was announced in 2011 by Japanese researchers who found large quantities of REE on the ocean seafloor at the sea depths greater than 4,000 m. The classic approach to investigate REE in deep sea sediments is to obtain sediment samples by drilling that is followed by laborious laboratory analysis. This is very expensive, time consuming and not appropriate for exploring vast areas. In order to efficiently explore the ocean floor for REE deposits, the further development of affordable sensors is needed. Here, we propose two nuclear techniques for exploring REE in surface deep sea sediments: i) Passive measurement of lutetium-176 radioactivity, appropriate if long-term in-situ measurements are possible, and ii) The use of the neutron sensor attached to a remotely operated vehicle for rapid in-situ measurement of gadolinium by thermal neutron-capture. Since concentrations of lutetium and gadolinium show strong linear correlation to the total REE concentrations in deep sea sediments, it is possible to deduce the total REE content by measuring Lu or Gd concentrations only.

SELECTION OF CITATIONS
SEARCH DETAIL
...