Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Brain Commun ; 5(4): fcad213, 2023.
Article in English | MEDLINE | ID: mdl-37614989

ABSTRACT

Polymicrogyria is estimated to be one of the most common brain malformations, accounting for ∼16% of malformations of cortical development. However, the prevalence and incidence of polymicrogyria is unknown. Our aim was to estimate the prevalence, incidence rate, neuroimaging diversity, aetiology, and clinical phenotype of polymicrogyria in a population-based paediatric cohort. We performed a systematic search of MRI scans at neuroradiology department databases in Stockholm using the keyword polymicrogyria. The study population included all children living in the Stockholm region born from January 2004 to June 2021 with polymicrogyria. Information on the number of children living in the region during 2004-21 was collected from records from Statistics Sweden, whereas the number of births for each year during the study period was collected from the Swedish Medical Birth Register. All MRI scans were re-evaluated, and malformations were classified by a senior paediatric neuroradiologist. The prevalence and yearly incidence were estimated. Clinical data were collected from medical records. A total of 109 patients with polymicrogyria were included in the study. The overall polymicrogyria prevalence in Stockholm was 2.3 per 10 000 children, and the overall estimated yearly incidence between 2004 and 2020 was 1.9 per 10 000 person-years. The most common polymicrogyria distribution was in the frontal lobe (71%), followed by the parietal lobe (37%). Polymicrogyria in the peri-sylvian region was observed in 53%. Genetic testing was performed in 90 patients revealing pathogenic variants in 32%. Additionally, 12% had variants of uncertain significance. Five patients had a confirmed congenital infection, and in six individuals, the cause of polymicrogyria was assumed to be vascular. Epilepsy was diagnosed in 54%. Seizure onset during the first year of life was observed in 44%. The most common seizure types were focal seizures with impaired awareness, followed by epileptic spasms. Thirty-three of 59 patients with epilepsy (56%) were treated with more than two anti-seizure medications, indicating that pharmacoresistant epilepsy is common in polymicrogyria patients. Neurodevelopmental symptoms were observed in 94% of the individuals. This is the first population-based study on polymicrogyria prevalence and incidence. Confirmed genetic aetiology was present in one-third of individuals with polymicrogyria. Epilepsy was common in this patient group, and the majority had pharmacoresistant epilepsy. These findings increase our knowledge about polymicrogyria and will help in counselling patients and their families.

2.
Front Genet ; 14: 1174046, 2023.
Article in English | MEDLINE | ID: mdl-37424725

ABSTRACT

FOXC1 is a ubiquitously expressed forkhead transcription factor that plays a critical role during early development. Germline pathogenic variants in FOXC1 are associated with anterior segment dysgenesis and Axenfeld-Rieger syndrome (ARS, #602482), an autosomal dominant condition with ophthalmologic anterior segment abnormalities, high risk for glaucoma and extraocular findings including distinctive facial features, as well as dental, skeletal, audiologic, and cardiac anomalies. De Hauwere syndrome is an ultrarare condition previously associated with 6p microdeletions and characterized by anterior segment dysgenesis, joint instability, short stature, hydrocephalus, and skeletal abnormalities. Here, we report clinical findings of two unrelated adult females with FOXC1 haploinsufficiency who have ARS and skeletal abnormalities. Final molecular diagnoses of both patients were achieved using genome sequencing. Patient 1 had a complex rearrangement involving a 4.9 kB deletion including FOXC1 coding region (Hg19; chr6:1,609,721-1,614,709), as well as a 7 MB inversion (Hg19; chr6:1,614,710-8,676,899) and a second deletion of 7.1 kb (Hg19; chr6:8,676,900-8,684,071). Patient 2 had a heterozygous single nucleotide deletion, resulting in a frameshift and a premature stop codon in FOXC1 (NM_001453.3): c.467del, p.(Pro156Argfs*25). Both individuals had moderate short stature, skeletal abnormalities, anterior segment dysgenesis, glaucoma, joint laxity, pes planovalgus, dental anomalies, hydrocephalus, distinctive facial features, and normal intelligence. Skeletal surveys revealed dolichospondyly, epiphyseal hypoplasia of femoral and humeral heads, dolichocephaly with frontal bossin gand gracile long bones. We conclude that haploinsufficiency of FOXC1 causes ARS and a broad spectrum of symptoms with variable expressivity that at its most severe end also includes a phenotype overlapping with De Hauwere syndrome.

3.
Front Neurol ; 14: 1170005, 2023.
Article in English | MEDLINE | ID: mdl-37273706

ABSTRACT

Introduction: Neuromuscular disorders (NMDs) have a heterogeneous etiology. A genetic diagnosis is key to personalized healthcare and access to targeted treatment for the affected individuals. Methods: In this study, 861 patients with NMDs were analyzed with genome sequencing and comprehensive variant calling including single nucleotide variants, small insertions/deletions (SNVs/INDELs), and structural variants (SVs) in a panel of 895 NMD genes, as well as short tandem repeat expansions (STRs) at 28 loci. In addition, for unsolved cases with an unspecific clinical presentation, the analysis of a panel with OMIM disease genes was added. Results: In the cohort, 27% (232/861) of the patients harbored pathogenic variants, of which STRs and SVs accounted for one-third of the patients (71/232). The variants were found in 107 different NMD genes. Furthermore, 18 pediatric patients harbored pathogenic variants in non-NMD genes. Discussion: Our results highlight that for children with unspecific hypotonia, a genome-wide analysis rather than a disease-based gene panel should be considered as a diagnostic approach. More importantly, our results clearly show that it is crucial to include STR- and SV-analyses in the diagnostics of patients with neuromuscular disorders.

4.
J Intern Med ; 294(1): 96-109, 2023 07.
Article in English | MEDLINE | ID: mdl-37151110

ABSTRACT

BACKGROUND: Autoimmune Addison's disease (AAD) is the most common cause of primary adrenal insufficiency (PAI). Despite its exceptionally high heritability, tools to estimate disease susceptibility in individual patients are lacking. We hypothesized that polygenic risk score (PRS) for AAD could help investigate PAI pathogenesis in pediatric patients. METHODS: We here constructed and evaluated a PRS for AAD in 1223 seropositive cases and 4097 controls. To test its clinical utility, we reevaluated 18 pediatric patients, whose whole genome we also sequenced. We next explored the individual PRS in more than 120 seronegative patients with idiopathic PAI. RESULTS: The genetic susceptibility to AAD-quantified using PRS-was on average 1.5 standard deviations (SD) higher in patients compared with healthy controls (p < 2e - 16), and 1.2 SD higher in the young patients compared with the old (p = 3e - 4). Using the novel PRS, we searched for pediatric patients with strikingly low AAD susceptibility and identified cases of monogenic PAI, previously misdiagnosed as AAD. By stratifying seronegative adult patients by autoimmune comorbidities and disease duration we could delineate subgroups of PRS suggesting various disease etiologies. CONCLUSIONS: The PRS performed well for case-control differentiation and susceptibility estimation in individual patients. Remarkably, a PRS for AAD holds promise as a means to detect disease etiologies other than autoimmunity.


Subject(s)
Addison Disease , Adult , Humans , Child , Autoantibodies , Autoimmunity , Risk Factors , Genetic Predisposition to Disease
5.
Sci Rep ; 13(1): 6904, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37106068

ABSTRACT

Whole genome sequencing (WGS) has the potential to be a comprehensive genetic test, especially relevant for individuals with neurodevelopmental disorders, syndromes and congenital malformations. However, the cost consequences of using whole genome sequencing as a first-line genetic test for these individuals are not well understood. The study objective was to compare the healthcare costs and diagnostic yield when WGS is performed as the first-line test instead of chromosomal microarray analysis (CMA). Two cohorts were analyzed retrospectively using register data, cohort CMA (418 patients referred for CMA at the department of Clinical Genetics, Karolinska University Hospital, during 2015) and cohort WGS (89 patients included in a WGS-first prospective study in 2017). The analysis compared healthcare consumption over a 2-year period after referral for genetic testing, the diagnostic yield over a 2- and 3-year period after referral was also compiled. The mean healthcare cost per patient in cohort WGS was $2,339 lower compared to cohort CMA ($ - 2339, 95% CI - 12,238-7561; P = 0.64) including higher costs for genetic investigations ($1065, 95% CI 834-1295; P < 0.001) and lower costs for outpatient care ($ - 2330, 95% CI - 3992 to (- 669); P = 0.006). The diagnostic yield was 23% higher for cohort WGS (cohort CMA 20.1%, cohort WGS 24.7%) (0.046, 95% CI - 0.053-0.145; P = 0.36). WGS as a first-line diagnostic test for individuals with neurodevelopmental disorders is associated with statistically non-significant lower costs and higher diagnostic yield compared with CMA. This indicates that prioritizing WGS over CMA in health care decision making will yield positive expected outcomes as well as showing a need for further research.


Subject(s)
Neurodevelopmental Disorders , Humans , Prospective Studies , Retrospective Studies , Cost-Benefit Analysis , Whole Genome Sequencing , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics
6.
Am J Med Genet A ; 191(7): 1929-1934, 2023 07.
Article in English | MEDLINE | ID: mdl-37017437

ABSTRACT

Seckel syndrome is an ultrarare autosomal recessive genetically heterogenous condition characterized by intrauterine and postnatal growth restriction, proportionate severe short stature, severe microcephaly, intellectual disability, and distinctive facial features including a prominent nose. Up to now, 40 patients with molecularly confirmed Seckel syndrome have been reported with biallelic variants in nine genes: ATR, CENPJ, CEP63, CEP152, DNA2, NIN, NSMCE2, RBBP8, and TRAIP. Homozygosity for nonsense variant (c.129G>A, p.43*) in CEP63 was described in three cousins with microcephaly, short stature, mild to moderate intellectual disability and diagnoses of Seckel syndrome. Here, we report a second family with three siblings who are compound heterozygous for loss-of-function variants in CEP63, c.1125T>G, p.(Tyr375*) and c.595del, p.(Glu199Asnfs*11). All siblings present with microcephaly, prominent nose, and intellectual disability but only one has severe short stature. Two siblings have aggressive behavior, a feature previously not reported in Seckel syndrome. This report adds two novel truncating variants in CEP63 and extends the clinical knowledge on CEP63-related conditions.


Subject(s)
Dwarfism , Intellectual Disability , Microcephaly , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Dwarfism/diagnosis , Dwarfism/genetics , Facies , Phenotype , Ligases/genetics , Cell Cycle Proteins/genetics
7.
Am J Med Genet A ; 191(2): 378-390, 2023 02.
Article in English | MEDLINE | ID: mdl-36349425

ABSTRACT

Bladder exstrophy is a rare congenital malformation leaving the urinary bladder open in the midline of the abdomen at birth. There is a clear genetic background with chromosome aberrations, but so far, no consistent findings apart from 22q11-duplications detected in about 2%-3% of all patients. Some genes are implicated like the LZTR1, ISL1, CELSR3, and the WNT3 genes, but most are not explained molecularly. We have performed chromosomal microarray analysis on a cohort of 140 persons born with bladder exstrophy to look for submicroscopic chromosomal deletions and duplications. Pathogenic or possibly pathogenic microdeletions or duplications were found in 16 patients (11.4%) and further 9 with unknown significance. Two findings were in regions linked to known syndromes, two findings involved the same gene (MCC), and all other findings were unique. A closer analysis suggests a few gene networks that are involved in the pathogenesis of bladder exstrophy; the WNT-signaling pathway, the chromosome 22q11 region, the RIT2 and POU families, and involvement of the Golgi apparatus. Bladder exstrophy is a rare malformation and is reported to be associated with several chromosome aberrations. Our data suggest involvement of some specific molecular pathways.


Subject(s)
Bladder Exstrophy , Humans , Infant, Newborn , Bladder Exstrophy/genetics , Chromosome Aberrations , Chromosomes , DNA Copy Number Variations/genetics , Urinary Bladder/abnormalities
8.
Sci Total Environ ; 858(Pt 1): 159740, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36461579

ABSTRACT

Fish tissue levels have to comply with environmental quality standards (EQSs) within the European Water Framework Directive. However, within monitoring, contaminants are sometimes measured in a different tissue than the tissue for which the environmental (whole fish) or human (fillet (equivalent to muscle tissue)) quality standard is set. Tissue conversion factors (k), describing the relationship between concentrations in different tissues, can be used to obtain a quality standard for the appropriate tissue. Several different approaches have been suggested for the calculation of k. For monitoring purposes, we propose the use of a simple, easy reproducible approach that assumes proportionality between two tissue, or tissue and whole fish, concentrations. This allows for an easy comparison of studies and adoption of ks into independent monitoring programs. Here, we determined ks for three metals (mercury (Hg), lead (Pb), cadmium (Cd)) and nine per- and polyfluoroalkyl substances (PFAS) including perfluorooctanesulfonic acid (PFOS) across six marine and freshwater fish species from Northern European lakes and the Baltic Sea. We found significant species differences for Hg for kmuscle/whole fish, for Cd and Pb for kliver/whole fish and for Cd for kliver/muscle. For perfluoroalkyl carboxylic acids (PFCA), we found a chain length dependence with lowest kliver/muscle at low and high chain lengths (C8, C13) and highest for median chain lengths (C9-C12). Further, there were differences between fish species with kliver/muscle for PFOS almost doubling from eelpout (10.3) to herring (19.2) and increasing up to a factor 4 between eelpout and herring for other PFASs. FOSA had two distinctive groups, herring with a kliver/muscle of 48.7 and a second group with ks of 2.3 to 5.9 for all other fish species. Our results suggest that differences in the tissue somatic index, and contaminant uptake, tissue transfer and metabolism result in the need for species-specific ks within monitoring.


Subject(s)
Mercury , Animals , Humans , Cadmium , Lead , Thromboplastin , Fishes , Lakes
9.
Biomedicines ; 10(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36551928

ABSTRACT

The pyruvate dehydrogenase complex (PDC) is responsible for the conversion of pyruvate into acetyl-CoA, which is used for energy conversion in cells. PDC activity is regulated by phosphorylation via kinases and phosphatases (PDK/PDP). Variants in all subunits of the PDC and in PDK3 have been reported, with varying phenotypes including lactic acidosis, neurodevelopmental delay, peripheral neuropathy, or seizures. Here, we report a de novo heterozygous missense variant in PDK1 (c.1139G > A; p.G380D) in a girl with developmental delay and early onset severe epilepsy. To investigate the role of PDK1G380D in energy metabolism and neuronal development, we used a zebrafish model. In zebrafish embryos we show a reduced number of cells with mitochondria with membrane potential, reduced movements, and a delay in neuronal development. Furthermore, we observe a reduction in the phosphorylation of PDH-E1α by PDKG380D, which suggests a disruption in the regulation of PDC activity. Finally, in patient fibroblasts, a mild reduction in the ratio of phosphorylated PDH over total PDH-E1α was detected. In summary, our findings support the notion that this aberrant PDK1 activity is the cause of clinical symptoms in the patient.

10.
Genet Med ; 24(11): 2296-2307, 2022 11.
Article in English | MEDLINE | ID: mdl-36066546

ABSTRACT

PURPOSE: Individuals with intellectual disability (ID) and/or neurodevelopment disorders (NDDs) are currently investigated with several different approaches in clinical genetic diagnostics. METHODS: We compared the results from 3 diagnostic pipelines in patients with ID/NDD: genome sequencing (GS) first (N = 100), GS as a secondary test (N = 129), or chromosomal microarray (CMA) with or without FMR1 analysis (N = 421). RESULTS: The diagnostic yield was 35% (GS-first), 26% (GS as a secondary test), and 11% (CMA/FMR1). Notably, the age of diagnosis was delayed by 1 year when GS was performed as a secondary test and the cost per diagnosed individual was 36% lower with GS first than with CMA/FMR1. Furthermore, 91% of those with a negative result after CMA/FMR1 analysis (338 individuals) have not yet been referred for additional genetic testing and remain undiagnosed. CONCLUSION: Our findings strongly suggest that genome analysis outperforms other testing strategies and should replace traditional CMA and FMR1 analysis as a first-line genetic test in individuals with ID/NDD. GS is a sensitive, time- and cost-effective method that results in a confirmed molecular diagnosis in 35% of all referred patients.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Developmental Disabilities/genetics , Genetic Testing/methods , Microarray Analysis , Neurodevelopmental Disorders/genetics , Fragile X Mental Retardation Protein/genetics
11.
Hum Mutat ; 43(11): 1567-1575, 2022 11.
Article in English | MEDLINE | ID: mdl-35842787

ABSTRACT

Prader-Willi syndrome (PWS; MIM# 176270) is a neurodevelopmental disorder caused by the loss of expression of paternally imprinted genes within the PWS region located on 15q11.2. It is usually caused by either maternal uniparental disomy of chromosome 15 (UPD15) or 15q11.2 recurrent deletion(s). Here, we report a healthy carrier of a balanced X;15 translocation and her two daughters, both with the karyotype 45,X,der(X)t(X;15)(p22;q11.2),-15. Both daughters display symptoms consistent with haploinsufficiency of the SHOX gene and PWS. We explored the architecture of the derivative chromosomes and investigated effects on gene expression in patient-derived neural cells. First, a multiplex ligation-dependent probe amplification methylation assay was used to determine the methylation status of the PWS-region revealing maternal UPD15 in daughter 2, explaining her clinical symptoms. Next, short read whole genome sequencing and 10X genomics linked read sequencing was used to pinpoint the exact breakpoints of the translocation. Finally, we performed transcriptome sequencing on neuroepithelial stem cells from the mother and from daughter 1 and observed biallelic expression of genes in the PWS region (including SNRPN) in daughter 1. In summary, our multi-omics analysis highlights two different PWS mechanisms in one family and provide an example of how structural variation can affect imprinting through long-range interactions.


Subject(s)
DNA Methylation , Prader-Willi Syndrome , Chromosomes, Human, Pair 15/genetics , Female , Genomic Imprinting , Humans , Prader-Willi Syndrome/genetics , Translocation, Genetic , Uniparental Disomy/genetics , snRNP Core Proteins/genetics
12.
Mol Cytogenet ; 14(1): 30, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34127035

ABSTRACT

BACKGROUND: Fetoplacental discrepancies occur in approximately 1-2% of analyzed prenatal cases. They are typically due to confined placental mosaicism, where an aberration is observed in the placental cells but not found in the fetal cells. Confined placental mosaicism usually involves aneuploidies and more sparsely structural chromosomal aberrations. To the best of our knowledge, this is the first reported case of a discrepancy in the analyses of chorionic villus sampling and amniocentesis involving two different structural chromosomal aberrations of chromosome 21. CASE PRESENTATION: We report a 33-year-old woman who was referred for a non-invasive prenatal testing due to an increased risk of trisomy 21 gleaned from a combined ultrasound and blood test. The non-invasive prenatal testing showed an increased risk of trisomy 21 with a normalized coverage signal that did not match the fetal cell-free DNA fraction. Rapid aneuploidy detection performed on uncultured chorionic villi indicated mosaicism for trisomy 21. The follow-up analyses revealed discordant chromosomal aberrations: 46,XY,der(21)t(10;21)(p11.21;q10) in the analysis of the chorionic villus sampling and 46,XY, + 21,der(21;21)(q10;q10) in the analysis of the amniocentesis. Thus, the analyses indicated mosaicism for a cell line containing trisomy 21 and a cell line containing a partially duplicated short arm of chromosome 10 in the chorionic villi and complete trisomy 21 resulting from an isochromosome 21 in the amniotic fluid. The analyses of the lymphocytes and the fibroblasts of the woman were normal. CONCLUSIONS: We propose a multiple-step mechanism as a possible theoretical explanation for the formation of these discordant structural chromosomal aberrations in the chorionic villi and amniotic fluid. With this case report, we want to highlight the importance of understanding the possible underlying embryological mechanisms when interpreting results from different prenatal analyses.

13.
J Hum Genet ; 66(10): 995-1008, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33875766

ABSTRACT

Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.


Subject(s)
Bone Diseases, Developmental/genetics , Ciliopathies/genetics , Genetic Predisposition to Disease , Protein Isoforms/genetics , Adult , Aged , Bone Diseases, Developmental/epidemiology , Bone Diseases, Developmental/pathology , Ciliopathies/epidemiology , Ciliopathies/pathology , Cytoplasmic Dyneins/genetics , Cytoskeletal Proteins/genetics , Female , Genome, Human/genetics , High-Throughput Nucleotide Sequencing , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Microtubule-Associated Proteins/genetics , Middle Aged , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Whole Genome Sequencing
14.
Genome Med ; 13(1): 40, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33726816

ABSTRACT

BACKGROUND: We report the findings from 4437 individuals (3219 patients and 1218 relatives) who have been analyzed by whole genome sequencing (WGS) at the Genomic Medicine Center Karolinska-Rare Diseases (GMCK-RD) since mid-2015. GMCK-RD represents a long-term collaborative initiative between Karolinska University Hospital and Science for Life Laboratory to establish advanced, genomics-based diagnostics in the Stockholm healthcare setting. METHODS: Our analysis covers detection and interpretation of SNVs, INDELs, uniparental disomy, CNVs, balanced structural variants, and short tandem repeat expansions. Visualization of results for clinical interpretation is carried out in Scout-a custom-developed decision support system. Results from both singleton (84%) and trio/family (16%) analyses are reported. Variant interpretation is done by 15 expert teams at the hospital involving staff from three clinics. For patients with complex phenotypes, data is shared between the teams. RESULTS: Overall, 40% of the patients received a molecular diagnosis ranging from 19 to 54% for specific disease groups. There was heterogeneity regarding causative genes (n = 754) with some of the most common ones being COL2A1 (n = 12; skeletal dysplasia), SCN1A (n = 8; epilepsy), and TNFRSF13B (n = 4; inborn errors of immunity). Some causative variants were recurrent, including previously known founder mutations, some novel mutations, and recurrent de novo mutations. Overall, GMCK-RD has resulted in a large number of patients receiving specific molecular diagnoses. Furthermore, negative cases have been included in research studies that have resulted in the discovery of 17 published, novel disease-causing genes. To facilitate the discovery of new disease genes, GMCK-RD has joined international data sharing initiatives, including ClinVar, UDNI, Beacon, and MatchMaker Exchange. CONCLUSIONS: Clinical WGS at GMCK-RD has provided molecular diagnoses to over 1200 individuals with a broad range of rare diseases. Consolidation and spread of this clinical-academic partnership will enable large-scale national collaboration.


Subject(s)
Delivery of Health Care , Rare Diseases/diagnosis , Rare Diseases/genetics , Whole Genome Sequencing , Cohort Studies , DNA Copy Number Variations/genetics , Genetic Heterogeneity , Genomics , High-Throughput Nucleotide Sequencing , Humans , Information Dissemination , Inheritance Patterns/genetics , Microsatellite Repeats/genetics , Mutation/genetics , Sweden , Uniparental Disomy/genetics
15.
Eur J Paediatr Neurol ; 30: 71-81, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33453472

ABSTRACT

INTRODUCTION: Lissencephaly is a rare malformation of cortical development due to abnormal transmantle migration resulting in absent or reduced gyration. The lissencephaly spectrum consists of agyria, pachygyria and subcortical band heterotopia. In this study we compared genetic aetiology, neuroradiology, clinical phenotype and response to antiepileptic drugs in patients with epilepsy and lissencephaly spectrum malformations. METHODS: The study group consisted of 20 patients - 13 males and 7 females, aged 18 months to 21 years at the time of data collection. Genetic testing was performed by oligonucleotide array comparative genomic hybridization (microarray), multiplex ligation-dependent probe amplification (MLPA), targeted gene panels and whole exome/genome sequencing. All neuroradiological investigations were re-evaluated and the malformations were classified by the same neuroradiologist. Clinical features and response to anti-epileptic drugs (AEDs) were evaluated by retrospective review of medical records. RESULTS: In eleven patients (55%) mutations in PAFAH1B1 (LIS1) or variable microdeletions of 17p13.3 including the PAFAH1B1 gene were detected. Four patients (20%) had tubulin encoding gene mutations (TUBA1A, TUBG1 and TUBGCP6). Mutations in DCX, DYNC1H1, ADGRG1 and WDR62 were identified in single patients. In one patient, a possibly pathogenic intragenic deletion in TRIO was detected. A clear radiologic distinction could be made between tubulinopathies and PAFAH1B1 related lissencephaly. The majority of the patients had therapy resistant epilepsy and epileptic spasms was the most prominent seizure type. The best therapeutic response to seizure control in our cohort was obtained by the ketogenic diet, vigabatrin, clobazam, phenobarbital and valproate. CONCLUSION: The most common genetic aetiologies in our cohort of 20 individuals with epilepsy and lissencephaly spectrum were intragenic deletions or single nucleotide mutations in PAFAH1B1 or larger deletions in 17p13.3, encompassing PAFAH1B1, followed by mutations in tubulin encoding genes. Radiological findings could reliably predict molecular results only in agyria with a posterior to anterior gradient. Radiological and molecular findings did not correlate consistently with severity of clinical outcome or therapeutic response.


Subject(s)
Lissencephaly/classification , Lissencephaly/diagnostic imaging , Lissencephaly/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Adolescent , Anticonvulsants/therapeutic use , Child , Child, Preschool , Female , Humans , Infant , Male , Microtubule-Associated Proteins/genetics , Mutation , Phenotype , Retrospective Studies , Tubulin/genetics
16.
Front Genet ; 12: 803683, 2021.
Article in English | MEDLINE | ID: mdl-35186010

ABSTRACT

Induced pluripotent stem cells (iPSCs) from patients are an attractive disease model to study tissues with poor accessibility such as the brain. Using this approach, we and others have shown that trisomy 21 results in genome-wide transcriptional dysregulations. The effects of loss of genes on chromosome 21 is much less characterized. Here, we use patient-derived neural cells from an individual with neurodevelopmental delay and a ring chromosome 21 with two deletions spanning 3.8 Mb at the terminal end of 21q22.3, containing 60 protein-coding genes. To investigate the molecular perturbations of the partial monosomy on neural cells, we established patient-derived iPSCs from fibroblasts retaining the ring chromosome 21, and we then induced iPSCs into neuroepithelial stem cells. RNA-Seq analysis of NESCs with the ring chromosome revealed downregulation of 18 genes within the deleted region together with global transcriptomic dysregulations when compared to euploid NESCs. Since the deletions on chromosome 21 represent a genetic "contrary" to trisomy of the corresponding region, we further compared the dysregulated transcriptomic profile in with that of two NESC lines with trisomy 21. The analysis revealed opposed expression changes for 23 genes on chromosome 21 as well as 149 non-chromosome 21 genes. Taken together, our results bring insights into the effects on the global and chromosome 21 specific gene expression from a partial monosomy of chromosome 21qter during early neuronal differentiation.

17.
Hum Genet ; 140(5): 775-790, 2021 May.
Article in English | MEDLINE | ID: mdl-33315133

ABSTRACT

Chromoanagenesis is a genomic event responsible for the formation of complex structural chromosomal rearrangements (CCRs). Germline chromoanagenesis is rare and the majority of reported cases are associated with an affected phenotype. Here, we report a healthy female carrying two de novo CCRs involving chromosomes 4, 19, 21 and X and chromosomes 7 and 11, respectively, with a total of 137 breakpoint junctions (BPJs). We characterized the CCRs using a hybrid-sequencing approach, combining short-read sequencing, nanopore sequencing, and optical mapping. The results were validated using multiple cytogenetic methods, including fluorescence in situ hybridization, spectral karyotyping, and Sanger sequencing. We identified 137 BPJs, which to our knowledge is the highest number of reported breakpoint junctions in germline chromoanagenesis. We also performed a statistical assessment of the positioning of the breakpoints, revealing a significant enrichment of BPJ-affecting genes (96 intragenic BPJs, 26 genes, p < 0.0001), indicating that the CCRs formed during active transcription of these genes. In addition, we find that the DNA fragments are unevenly and non-randomly distributed across the derivative chromosomes indicating a multistep process of scattering and re-joining of DNA fragments. In summary, we report a new maximum number of BPJs (137) in germline chromoanagenesis. We also show that a hybrid sequencing approach is necessary for the correct characterization of complex CCRs. Through in-depth statistical assessment, it was found that the CCRs most likely was formed through an event resembling chromoplexy-a catastrophic event caused by erroneous transcription factor binding.


Subject(s)
Chromosome Breakage , Gene Rearrangement/genetics , Translocation, Genetic/genetics , Chromosomes/genetics , Cytogenetic Analysis , Female , Humans , In Situ Hybridization, Fluorescence , Whole Genome Sequencing
18.
Mol Cytogenet ; 13(1): 51, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33334361

ABSTRACT

BACKGROUND: Small copy number variations confined to the placenta are extremely rare findings in chorionic villus sampling, nonetheless of great clinical importance. To the best of our knowledge, this is the first reported case of confined placental mosaicism for an intragenic Duchenne muscular dystrophy (DMD) gene deletion. CASE PRESENTATION: We describe a pregnant woman where confined placental mosaicism for an intragenic DMD deletion was detected. She was referred for a chorionic villus sampling due to an increased risk of trisomy 21 derived from combined first trimester screening. Rapid aneuploidy detection showed a male fetus with normal results for chromosomes 13, 18 and 21. A chromosomal microarray demonstrated a deletion of exons 61-62 in the DMD gene in approximately 50% of the cells. A follow-up analysis on amniotic cells showed a normal result for the DMD gene. Hence, confined placental mosaicism was confirmed. CONCLUSIONS: We propose tissue specific fragile sites as a possible theoretical mechanism for the formation of submicroscopic copy number variations and highlight that the finding of DMD deletion mosaicism in a chorionic villus sample might be isolated to the placenta. Therefore, confirmation by amniocentesis is of crucial clinical importance to avoid misdiagnosis of the fetus.

19.
Hum Mutat ; 41(11): 1979-1998, 2020 11.
Article in English | MEDLINE | ID: mdl-32906200

ABSTRACT

Cytogenetically detected inversions are generally assumed to be copy number and phenotypically neutral events. While nonallelic homologous recombination is thought to play a major role, recent data suggest the involvement of other molecular mechanisms in inversion formation. Using a combination of short-read whole-genome sequencing (WGS), 10X Genomics Chromium WGS, droplet digital polymerase chain reaction and array comparative genomic hybridization we investigated the genomic structure of 18 large unique cytogenetically detected chromosomal inversions and achieved nucleotide resolution of at least one chromosomal inversion junction for 13/18 (72%). Surprisingly, we observed that seemingly copy number neutral inversions can be accompanied by a copy-number gain of up to 350 kb and local genomic complexities (3/18, 17%). In the resolved inversions, the mutational signatures are consistent with nonhomologous end-joining (8/13, 62%) or microhomology-mediated break-induced replication (5/13, 38%). Our study indicates that short-read 30x coverage WGS can detect a substantial fraction of chromosomal inversions. Moreover, replication-based mechanisms are responsible for approximately 38% of those events leading to a significant proportion of inversions that are actually accompanied by additional copy-number variation potentially contributing to the overall phenotypic presentation of those patients.


Subject(s)
Chromosome Inversion , DNA End-Joining Repair , DNA Repair , Comparative Genomic Hybridization , Female , Gene Frequency , Haplotypes , Heterozygote , Homologous Recombination , Humans , Karyotyping , Male , Pedigree , Whole Genome Sequencing
20.
Am J Med Genet A ; 182(5): 1143-1151, 2020 05.
Article in English | MEDLINE | ID: mdl-32125084

ABSTRACT

Clinical laboratory diagnostic evaluation of the genomes of children with suspected genetic disorders, including chromosomal microarray and exome sequencing, cannot detect copy number neutral genomic rearrangements such as inversions, balanced translocations, and complex chromosomal rearrangements (CCRs). We describe an infant with a clinical diagnosis of Cornelia de Lange syndrome (CdLS) in whom chromosome analysis revealed a de novo complex balanced translocation, 46,XY,t(5;7;6)(q11.2;q32;q13)dn. Subsequent molecular characterization by whole-genome sequencing (WGS) identified 23 breakpoints, delineating segments derived from four chromosomes (5;6;7;21) in ancestral or inverted orientation. One of the breakpoints disrupted a known CdLS gene, NIPBL. Further investigation revealed paternal origin of the CCR allele, clustering of the breakpoint junctions, and molecular repair signatures suggestive of a single catastrophic event. Notably, very short DNA segments (25 and 41 bp) were included in the reassembled chromosomes, lending additional support that the DNA repair machinery can detect and repair such segments. Interestingly, there was an independent paternally derived miniscule complex rearrangement, possibly predisposing to subsequent genomic instability. In conclusion, we report a CCR causing a monogenic Mendelian disorder, urging WGS analysis of similar unsolved cases with suspected Mendelian disorders. Breakpoint analysis allowed for identification of the underlying molecular diagnosis and implicated chromoanagenesis in CCR formation.


Subject(s)
Cell Cycle Proteins/genetics , Chromosome Aberrations , De Lange Syndrome/genetics , Translocation, Genetic/genetics , Chromosomes/genetics , De Lange Syndrome/pathology , Genetic Predisposition to Disease , Humans , Infant , Male , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...