Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 105(1): e4200, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37897325

ABSTRACT

Soil microbes impact plant community structure and diversity through plant-soil feedbacks. However, linking the relative abundance of plant pathogens and mutualists to differential plant recruitment remains challenging. Here, we tested for microbial mediation of pairwise feedback using a reciprocal transplant experiment in a lowland tropical forest in Panama paired with amplicon sequencing of soil and roots. We found evidence that plant species identity alters the microbial community, and these changes in microbial composition alter subsequent growth and survival of conspecific plants. We also found that greater community dissimilarity between species in their arbuscular mycorrhizal and nonpathogenic fungi predicted increased positive feedback. Finally, we identified specific microbial taxa across our target functional groups that differentially accumulated under conspecific settings. Collectively, these findings clarify how soil pathogens and mutualists mediate net feedback effects on plant recruitment, with implications for management and restoration.


Subject(s)
Microbiota , Mycobiome , Mycorrhizae , Feedback , Soil , Soil Microbiology , Forests , Plants , Plant Roots
2.
ISME J ; 17(12): 2160-2168, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37773438

ABSTRACT

The soil priming effect (PE), defined as the modification of soil organic matter decomposition by labile carbon (C) inputs, is known to influence C storage in terrestrial ecosystems. However, how chronic nutrient addition, particularly in leguminous and non-leguminous forests, will affect PE through interaction with nutrient (e.g., nitrogen and phosphorus) availability is still unclear. Therefore, we collected soils from leguminous and non-leguminous subtropical plantations across a suite of historical nutrient addition regimes. We added 13C-labeled glucose to investigate how background soil nutrient conditions and microbial communities affect priming and its potential microbial mechanisms. Glucose addition increased soil organic matter decomposition and prompted positive priming in all soils, regardless of dominant overstory tree species or fertilizer treatment. In non-leguminous soil, only combined nitrogen and phosphorus addition led to a higher positive priming than the control. Conversely, soils beneath N-fixing leguminous plants responded positively to P addition alone, as well as to joint NP addition compared to control. Using DNA stable-isotope probing, high-throughput quantitative PCR, enzyme assays and microbial C substrate utilization, we found that positive PE was associated with increased microbial C utilization, accompanied by an increase in microbial community activity, nutrient-related gene abundance, and enzyme activities. Our findings suggest that the balance between soil available N and P effects on the PE,  was dependent on rhizosphere microbial community composition. Furthermore, these findings highlight the roles of the interaction between plants and their symbiotic microbial communities in affecting soil priming and improve our understanding of the potential microbial pathways underlying soil PEs.


Subject(s)
Fabaceae , Microbiota , Soil/chemistry , Nitrogen/analysis , Phosphorus , Soil Microbiology , Forests , Plants/metabolism , Carbon/analysis , Glucose/metabolism
3.
PLoS Biol ; 19(8): e3001322, 2021 08.
Article in English | MEDLINE | ID: mdl-34411089

ABSTRACT

Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host's physiological capacities; however, the identity and functional role(s) of key members of the microbiome ("core microbiome") in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems' capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts' plastic and adaptive responses to environmental change requires (i) recognizing that individual host-microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.


Subject(s)
Acclimatization , Aquatic Organisms/microbiology , Biological Evolution , Ecology , Microbiota , Animals , Ecosystem , Humans , Symbiosis
4.
Nat Commun ; 11(1): 2204, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371877

ABSTRACT

Empirical studies show that plant-soil feedbacks (PSF) can generate negative density dependent (NDD) recruitment capable of maintaining plant community diversity at landscape scales. However, the observation that common plants often exhibit relatively weaker NDD than rare plants at local scales is difficult to reconcile with the maintenance of overall plant diversity. We develop a spatially explicit simulation model that tracks the community dynamics of microbial mutualists, pathogens, and their plant hosts. We find that net PSF effects vary as a function of both host abundance and key microbial traits (e.g., host affinity) in ways that are compatible with both common plants exhibiting relatively weaker local NDD, while promoting overall species diversity. The model generates a series of testable predictions linking key microbial traits and the relative abundance of host species, to the strength and scale of PSF and overall plant community diversity.


Subject(s)
Ecosystem , Mycorrhizae/physiology , Plants/metabolism , Soil Microbiology , Soil/chemistry , Symbiosis/physiology , Algorithms , Feedback, Physiological/physiology , Host Microbial Interactions , Models, Theoretical , Mycorrhizae/classification , Plants/classification , Plants/microbiology , Species Specificity
5.
Nat Commun ; 11(1): 2684, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457365

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...