Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 626(8001): 984-989, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326619

ABSTRACT

Controlled charge flows are fundamental to many areas of science and technology, serving as carriers of energy and information, as probes of material properties and dynamics1 and as a means of revealing2,3 or even inducing4,5 broken symmetries. Emerging methods for light-based current control5-16 offer particularly promising routes beyond the speed and adaptability limitations of conventional voltage-driven systems. However, optical generation and manipulation of currents at nanometre spatial scales remains a basic challenge and a crucial step towards scalable optoelectronic systems for microelectronics and information science. Here we introduce vectorial optoelectronic metasurfaces in which ultrafast light pulses induce local directional charge flows around symmetry-broken plasmonic nanostructures, with tunable responses and arbitrary patterning down to subdiffractive nanometre scales. Local symmetries and vectorial currents are revealed by polarization-dependent and wavelength-sensitive electrical readout and terahertz (THz) emission, whereas spatially tailored global currents are demonstrated in the direct generation of elusive broadband THz vector beams17. We show that, in graphene, a detailed interplay between electrodynamic, thermodynamic and hydrodynamic degrees of freedom gives rise to rapidly evolving nanoscale driving forces and charge flows under the extremely spatially and temporally localized excitation. These results set the stage for versatile patterning and optical control over nanoscale currents in materials diagnostics, THz spectroscopies, nanomagnetism and ultrafast information processing.

2.
ACS Nano ; 17(11): 10721-10732, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37260418

ABSTRACT

Efficient excitation and harvesting of hot carriers from nanoscale metals is central to many emerging photochemical, photovoltaic, and ultrafast optoelectronic applications. Nevertheless, direct experimental evidence of the energy-dependent femtosecond dynamics in ubiquitous tens-of-nanometer gold structures remains elusive, despite the potentially rich interplay between interfacial and internal plasmonic fields, excitation distributions, and scattering processes. To explore the effects of nanoscale structure on these dynamics, we employ simultaneous time-, angle-, and energy-resolved photoemission spectroscopy of single plasmonic nanoparticles. Photoelectron velocity and electric field distributions reveal bulk-like ballistic hot electron transport in different geometries, lacking any signatures of surface effects. Energy-resolved dynamics are measured in the 1-2 eV range and extrapolated to lower energies via Boltzmann theory, providing a detailed view of hot electron lifetimes within nanoscale gold. We find that particles with relevant dimensions as small as 10 nm serve as exemplary platforms for studying intrinsic metal dynamics.

3.
Light Sci Appl ; 12(1): 133, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37258515

ABSTRACT

Nonlinear optical spectroscopies are powerful tools for investigating both static material properties and light-induced dynamics. Terahertz (THz) emission spectroscopy has emerged in the past several decades as a versatile method for directly tracking the ultrafast evolution of physical properties, quasiparticle distributions, and order parameters within bulk materials and nanoscale interfaces. Ultrafast optically-induced THz radiation is often analyzed mechanistically in terms of relative contributions from nonlinear polarization, magnetization, and various transient free charge currents. While this offers material-specific insights, more fundamental symmetry considerations enable the generalization of measured nonlinear tensors to much broader classes of systems. We thus frame the present discussion in terms of underlying broken symmetries, which enable THz emission by defining a system directionality in space and/or time, as well as more detailed point group symmetries that determine the nonlinear response tensors. Within this framework, we survey a selection of recent studies that utilize THz emission spectroscopy to uncover basic properties and complex behaviors of emerging materials, including strongly correlated, magnetic, multiferroic, and topological systems. We then turn to low-dimensional systems to explore the role of designer nanoscale structuring and corresponding symmetries that enable or enhance THz emission. This serves as a promising route for probing nanoscale physics and ultrafast light-matter interactions, as well as facilitating advances in integrated THz systems. Furthermore, the interplay between intrinsic and extrinsic material symmetries, in addition to hybrid structuring, may stimulate the discovery of exotic properties and phenomena beyond existing material paradigms.

4.
Nano Lett ; 22(2): 644-651, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34989588

ABSTRACT

Dielectric coatings offer a versatile means of manipulating hot carrier emission from nanoplasmonic systems for emerging nanocatalysis and photocathode applications, with uniform coatings acting as regulators and nonuniform coatings providing directional photocurrent control. However, the mechanisms for electron emission through dense and mesoporous silica (SiO2) coatings require further examination. Here, we present a systematic investigation of photoemission from single gold nanorods as a function of dense versus mesoporous silica coating thicknesses. Studies with dense coatings on gold nanostructures clarify the short (∼1 nm) attenuation length responsible for severely reduced transmission through the silica conduction band. By contrast, mesoporous silica is much more transmissive, and a simple geometric model quantitatively recapitulates the electron escape probability through nanoscopic porous channels. Finally, photoelectron velocity map imaging (VMI) studies of nanorods with coating defects verify that photoemission occurs preferentially through the thinner regions, illustrating new opportunities for designing photocurrent distributions on the nanoscale.

5.
ACS Nano ; 15(1): 1566-1578, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33427462

ABSTRACT

Spatial and momentum distributions of excited charge carriers in nanoplasmonic systems depend sensitively on optical excitation parameters and nanoscale geometry, which therefore control the efficiency and functionality of plasmon-enhanced catalysts, photovoltaics, and nanocathodes. Growing appreciation over the past decade for the different roles of volume- vs surface-mediated excitation in such systems has underscored the need for explicit separation and quantification of these pathways. Toward these ends, we utilize angle-resolved photoelectron velocity map imaging to distinguish these processes in gold nanorods of different aspect ratios down to the spherical limit. Despite coupling to the longitudinal surface plasmon, we find that resonantly excited nanorods always exhibit transverse (sideways) multiphoton photoemission distributions due to photoexcitation within volume field enhancement regions rather than at the tip hot spots. This behavior is accurately reproduced via ballistic Monte Carlo modeling, establishing that volume-excited electrons primarily escape through the nanorod sides. Furthermore, we demonstrate optical control over the photoelectron angular distributions via a screening-induced transition from volume (transverse/side) to surface (longitudinal/tip) photoemission with red detuning of the excitation laser. Frequency-dependent cross sections are separately quantified for these mechanisms by comparison with theoretical calculations, combining volume and surface velocity-resolved photoemission modeling. Based on these results, we identify nanomaterial-specific contributions to the photoemission cross sections and offer general nanoplasmonic design principles for controlling photoexcitation/emission distributions via geometry- and frequency-dependent tuning of the volume vs surface fields.

6.
Opt Lett ; 45(22): 6258-6261, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33186964

ABSTRACT

Optical bandpass filters can be utilized to suppress parasitic broadband spectral power prior to laser amplification but are typically designed around specific frequencies or require manual adjustment, thus limiting their compatibility with highly tunable or integrated laser systems. In this Letter, we introduce a self-adaptive volume holographic filter using the dynamic two-beam coupling interaction in photorefractive BaTiO3, demonstrating -10dB suppression of amplified spontaneous emission noise surrounding a tunable 780 nm diode laser peak, with <2nm filter bandwidth and 50% power throughput. The spectral filtering is automatically centered on the lasing mode, with an estimated auto-tuning rate of 100 GHz/s under typical conditions. Furthermore, the filter suppression and bandwidth can be optimized via the two-beam coupling intensity ratio and angle, respectively, for versatile control over the self-adaptive filter characteristics.

7.
J Chem Phys ; 153(10): 101101, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32933286

ABSTRACT

A variety of applications rely on the efficient generation of hot carriers within metal nanoparticles and charge transfer to surrounding molecules or materials. The optimization of such processes requires a detailed understanding of excited carrier spatial, temporal, and momentum distributions, which also leads to opportunities for active optical control over hot carrier dynamics on nanometer and femtosecond scales. Such capabilities are emerging in nanoplasmonic systems and typically rely on tuning optical polarization and/or frequency to selectively excite one or more discrete hot spots defined by the particle geometry. Here, we introduce a unique case in which hot electron excitation and emission distributions can instead be continuously controlled via linear laser polarization in the azimuthal plane of a gold nanoshell supported on a substrate. In this configuration, it is the laser field that breaks the azimuthal symmetry of the supported nanoshell and determines the plasmonic field distribution. Using angle-resolved photoelectron velocity map imaging, we find that the hot electrons are predominantly emitted orthogonal to the nanoshell dipolar surface plasmon resonance axis defined by the laser polarization. Furthermore, such anisotropic emission is only observed for nanoshells, while solid gold nanospheres are found to be isotropic emitters. We show that all of these effects are recapitulated via simulation of the plasmonic electric field distributions within the nanoparticle volume and ballistic Monte Carlo modeling of the hot electron dynamics. These results demonstrate a highly predictive level of understanding of the underlying physics and possibilities for ultrafast spatiotemporal control over hot carrier dynamics.

8.
Nat Commun ; 11(1): 1367, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32170067

ABSTRACT

Plasmonic nanocathodes offer unique opportunities for optically driving, switching, and steering femtosecond photocurrents in nanoelectronic devices and pulsed electron sources. However, angular photocurrent distributions in nanoplasmonic systems remain poorly understood and are therefore difficult to anticipate and control. Here, we provide a direct momentum-space characterization of multiphoton photoemission from plasmonic gold nanostars and demonstrate all-optical control over these currents. Versatile angular control is achieved by selectively exciting different tips on single nanostars via laser frequency or linear polarization, thereby rotating the tip-aligned directional photoemission as observed with angle-resolved 2D velocity mapping and 3D reconstruction. Classical plasmonic field simulations combined with quantum photoemission theory elucidate the role of surface-mediated nonlinear excitation for plasmonic field enhancements highly concentrated at the sharp tips (Rtip = 3.4 nm). We thus establish a simple mechanism for femtosecond spatiotemporal current control in designer nanosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...