Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Dalton Trans ; 41(12): 3553-61, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22310968

ABSTRACT

Reaction of nickel(II) chloride hexahydrate with N-n-butyldiethanolamine H(2)L (3) in the presence of LiH in anhydrous THF leads to the formation of the unique octanuclear chloro-bridged nickel(II) double cubane [({Ni(II)(4)(µ(3)-OH)Cl(3)(HL)(3)}µ(2)-Cl)(2)] (4) in 57% yield. According to single crystal X-ray structure analysis, complex 4·4CH(2)Cl(2) possesses a [({Ni(4)(µ(3)-OH)(µ(3)-O)(3)(OH)(3)(N)(3)(Cl)(3)}µ(2)-Cl)(2)] core and crystallizes in the monoclinic space group P2(1)/c with a = 18.292(2), b = 19.8972(5), c = 23.295(2) Å, ß = 98.408(6)°, V = 8387.3(8) Å(3), and four molecules in the unit cell. The analysis of the SQUID magnetic susceptibility data identified 4 as a weakly coupled dimer (J(1) = 14.5 K, J(2) = -0.6 K) with a ground state of S = 0, resulting from two S = 4 states of each {Ni(4)} subunits. Although complex 4 does not show an ac out-of-phase signal in a zero dc field at temperatures of 1.8 K and higher, low-temperature magnetization measurements revealed that complex 4 is a single-molecule magnet and shows hysteretic magnetization characteristics with typical temperature and sweep-rate dependencies. The eye-catching feature of complex 4 is the presence of two different blocking temperatures (0.9 K around zero field and 1.3 K at higher fields). The origin of this highly unusual behavior can be assigned to the dimer-nature of the interaction between the two S = 4 units. Furthermore STM and current imaging tunnelling spectroscopy (CITS) were performed on aggregates of 4 drop-coated on highly oriented pyrolytic graphite (HOPG) surfaces. CITS measurements show a strong contrast in the area of the nickel centers and a HOMO-LUMO gap of approximately 0.8 V.

2.
Inorg Chem ; 51(1): 88-97, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22145638

ABSTRACT

The copper(II) complexes [Cu(4)(1,3-tpbd)(2)(H(2)O)(4)(NO(3))(4)](n)(NO(3))(4n)·13nH(2)O (1), [Cu(4)(1,3-tpbd)(2)(AsO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (2), [Cu(4)(1,3-tpbd)(2)(PO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (3), [Cu(2)(1,3-tpbd){(PhO)(2)PO(2)}(2)](2)(ClO(4))(4) (4), and [Cu(2)(1,3-tpbd){(PhO)PO(3)}(2)(H(2)O)(0.69)(CH(3)CN)(0.31)](2)(BPh(4))(4)·Et(2)O·CH(3)CN (5) [1,3-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh(4)(-) = tetraphenylborate] were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, and [Cu(2)(2,6-tpcd)(H(2)O)Cl](ClO(4))(2) (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-cresolate] show the occurrence of weak antiferromagnetic interactions between the copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, µ(4)-XO(4) (X = As and P) µ(1,2)-OPO and µ-O(phenolate) appearing as poor mediators of exchange interactions in this series of compounds. Simple orbital symmetry considerations based on the structural knowledge account for the small magnitude of the magnetic couplings found in these copper(II) compounds.

3.
Chemistry ; 16(16): 4784-92, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20306503

ABSTRACT

Reaction of cobalt(II) chloride hexahydrate with N-substituted diethanolamines H(2)L(2-4) (3) in the presence of LiH in anhydrous THF leads under anaerobic conditions to the formation of three isostructural tetranuclear cobalt(II) complexes [Co(II) (4)(Cl)(4)(HL(2-4))(4)] (4) with a [Co(4)(mu(3)-O)(4)](4+) cubane core. According to X-ray structural analyses, the complexes 4 a,c crystallize in the tetragonal space group I4(1)/a, whereas for complex 4 b the tetragonal space group P$\bar 4$ was found. In the solid state the orientation of the cubane cores and the formation of a 3D framework were controlled by the ligand substituents of the cobalt(II) cubanes 4. This also allowed detailed magnetic investigations on single crystals. The analysis of the SQUID magnetic susceptibility data for 4 a gave intramolecular ferromagnetic couplings of the cobalt(II) ions (J(1) approximately 20.4 K, J(2) approximately 7.6 K), resulting in an S=6 ground-state multiplet. The anisotropy was found to be of the easy-axis type (D=-1.55 K) with a resulting anisotropy barrier of Delta approximately 55.8 K. Two-dimensional electron-gas (2DEG) Hall magnetization measurements revealed that complex 4 a is a single-molecule magnet and shows hysteretic magnetization characteristics with typical temperature and sweep-rate dependencies below a blocking temperature of about 4.4 K. The hysteresis loops collapse at zero field owing to fast quantum tunneling of the magnetization (QTM). The structural and electronic properties of cobalt(II) cubane 4 a, deposited on a highly oriented pyrolytic graphite (HOPG) surface, were investigated by means of STM and current imaging tunneling spectroscopy (CITS) at RT and standard atmospheric pressure. In CITS measurements the rather large contrast found at the expected locations of the metal centers of the molecules indicated the presence of a strongly localized LUMO.


Subject(s)
Cobalt/chemistry , Diethylamines/chemistry , Diethylamines/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Crystallography, X-Ray , Ligands , Magnetic Resonance Spectroscopy , Magnetics , Microscopy, Scanning Tunneling , Molecular Structure , Temperature
4.
Dalton Trans ; (24): 2580-8, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17563794

ABSTRACT

The first BEDT-TTF charge transfer salt in which alternating electron-donor layers possess alpha- and kappa-type packing motifs has been synthesized. The crystal structure and physical properties of the organic conductor alpha-kappa-(BEDT-TTF)2Hg(SCN)3 are described, including a detailed description of its optical properties. The electronic behavior is dominated by a sharp metal-to-insulator transition at T = 176 K which is due to a first-order structural phase transition. The optical properties in the metallic regime are a superposition of those of the alpha- and kappa-phases, while in the insulating state the spectra become more anisotropic in the conducting plane, and the features of the two layers cannot be distinguished.

SELECTION OF CITATIONS
SEARCH DETAIL