Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomicrofluidics ; 10(2): 024103, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27014396

ABSTRACT

With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

2.
Sci Rep ; 3: 2290, 2013.
Article in English | MEDLINE | ID: mdl-23887310

ABSTRACT

Particles manipulation with optical forces is known as optical tweezing. While tweezing in free space with laser beams was established in the 1980s, integrating the optical tweezers on a chip is a challenging task. Recent experiments with plasmonic nanoantennas, microring resonators, and photonic crystal nanocavities have demonstrated optical trapping. However, the optical field of a tweezer made of a single microscopic resonator cannot be shaped. So far, this prevents from optically driven micromanipulations. Here we propose an alternative approach where the shape of the optical trap can be tuned by the wavelength in coupled nanobeam cavities. Using these shapeable tweezers, we present micromanipulation of polystyrene microspheres trapped on a silicon chip. These results show that coupled nanobeam cavities are versatile building blocks for optical near-field engineering. They open the way to much complex integrated tweezers using networks of coupled nanobeam cavities for particles or bio-objects manipulation at a larger scale.

3.
Biomicrofluidics ; 6(4): 44115, 2012.
Article in English | MEDLINE | ID: mdl-24339848

ABSTRACT

This work determines the dielectrophoretic response of surface modified polystyrene and silica colloidal particles by experimentally measuring their Clausius-Mossotti factors. Commercial charged particles, fabricated ones coated with fibronectin, and Janus particles that have been grafted with fibronectin on one side only were investigated. We show that the dielectrophoretic response of such particles can be controlled by the modification of the chemistry or the anisotropy of their surface. Moreover, by modelling the polarizabilities of those particles, the dielectric parameters of the particles and the grafted layer of protein can be measured.

4.
Opt Express ; 15(24): 16090-6, 2007 Nov 26.
Article in English | MEDLINE | ID: mdl-19550897

ABSTRACT

We experimentally demonstrate an ultra high Q/V nanocavity on SOI substrate. The design is based on modal adaptation within the cavity and allows to measure a quality factor of 58.000 for a modal volume of 0.6(lambda/n)(3) . This record Q/V value of 10(5) achieved for a structure standing on a physical substrate, rather than on membrane, is in very good agreement with theoretical predictions also shown. Based on these experimental results, we show that further refinements of the cavity design could lead to Q/V ratios close to 10(6).

5.
Opt Express ; 12(6): 1097-108, 2004 Mar 22.
Article in English | MEDLINE | ID: mdl-19474927

ABSTRACT

We established the angular conditions that maintain the quasi-phase matching conditions for enhanced second-harmonic generation. To do that, we investigated the equifrequency surfaces of the resonant Bloch modes of a two-dimensional periodic, hole-array photonic crystal etched into a GaN/sapphire epitaxial structure. The equifrequency surfaces exhibit remarkable shapes, in contrast to the simpler surfaces of a one-dimensional structure. The observed anisotropy agrees well with the surfaces calculated by a scattering matrix method. The equifrequency surfaces at fundamental and second-harmonic frequencies provide the values of polar and azimuthal angles that maintain quasi-phase matching conditions for enhanced second-harmonic generation over an extended tuning range. The predicted values for quasi phase-matching conditions show that frequency tuning for the two-dimensional case covers an about two times larger fractional bandwidth relative to the one-dimensional case.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 2B): 036616, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11909294

ABSTRACT

We report spatially resolved observations of light wave propagation along high refraction index dielectric heterowires lying on a transparent substrate. The heterowires are made of linear chains of closely packed mesoscopic particles. The optical excitation of these heterowires is performed through channel waveguides featuring submicrometer transverse cross sections. Both numerical simulations and near-field optical images, recorded with a photon scanning tunneling microscope, agree to show that, at visible frequencies, tuning the periodicity of the heterowires controls the propagation length within a range of several micrometers.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(6 Pt 2): 066607, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11736296

ABSTRACT

Experimental observation of light coupling between TiO(2) integrated waveguides of subwavelength cross section and pure three-dimensional evanescent light fields is reported. This near-field optical phenomenon is produced by controlling the location of the focusing of a laser beam totally reflected at the surface of the sample. The phenomenon is observed in direct space with a photon scanning tunneling microscope. Dielectric ridges several tens of micrometers long have been efficiently excited with this technique. Upon excitation, the extremities of the linear dielectric wires display intense light spots localized both inside and around the ridge. For ridge lengths up to 30 microm, the observed phenomenon has been reproduced numerically with a parallel implementation based on the three-dimensional Green dyadic method.

8.
Phys Rev Lett ; 86(21): 4950-3, 2001 May 21.
Article in English | MEDLINE | ID: mdl-11384389

ABSTRACT

We describe full multiple-scattering calculations of localized surface photonic states set up by lithographically designed nanostructures made of a finite number of dielectric pads deposited on a planar surface. The method is based on a numerical solution of the dyadic Dyson's equation. When the pads are arranged to form a closed circle, we find field patterns that look like the electronic charge density recently observed above quantum corrals. We propose two experimental techniques that could be used to observe these electromagnetic modes in direct space.

9.
Phys Rev Lett ; 86(6): 1102-5, 2001 Feb 05.
Article in English | MEDLINE | ID: mdl-11178020

ABSTRACT

Measurements are reported on the magnetization reversal in submicron magnetic rings fabricated by high-resolution electron beam lithography and lift-off from cobalt thin films. For all dimensions investigated, with diameters of 300-800 nm and a thickness of 10-50 nm, the flux closure state is the stable magnetization configuration. However, with increasing diameter and decreasing film thickness a metastable near single domain state can be obtained during the reversal process in an in-plane applied field.

SELECTION OF CITATIONS
SEARCH DETAIL
...