Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 11(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36358310

ABSTRACT

Anaplastic thyroid cancer (ATC) is a clinically aggressive form of undifferentiated thyroid cancer with limited treatment options. Immunotherapy for patients with ATC remains challenging. Tumor-associated macrophages (TAMs) constitute over 50% of ATC-infiltrating cells, and their presence is associated with a poor prognosis. Consequently, the development of new therapies targeting immune checkpoints in TAMs is considered a promising therapeutic approach for ATC. We have previously shown that soluble factors secreted by ATC cells induced pro-tumor M2-like polarization of human monocytes by upregulating the levels of the inhibitory receptor TIM3. Here, we extended our observations on ATC-cell-induced xenograft tumors. We observed a large number of immune cells infiltrating the ATC xenograft tumors. Significantly, 24-28% of CD45+ immune cells were macrophages (CD11b+ F4/80+). We further showed that 40% of macrophages were polarized toward a M2-like phenotype, as assessed by CD206 expression and by a significant increase in the Arg1/iNOS (M2/M1) ratio. Additionally, we found that ATC xenograft tumors had levels of TIM3 expression when determined by RT-PCR and immunofluorescence assays. Interestingly, we detected the expression of TIM3 in macrophages in ATC tumors by flow cytometry assays. Furthermore, TIM3 expression correlated with macrophage marker expression in human ATC. Our studies show that TIM3 is a newly identified immune checkpoint in macrophages. Since TIM3 is known as a negative immune regulator, it should be considered as a promising immunotherapeutic target for ATC.

2.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012511

ABSTRACT

Congenital iodide transport defect is an uncommon autosomal recessive disorder caused by loss-of-function variants in the sodium iodide symporter (NIS)-coding SLC5A5 gene and leading to dyshormonogenic congenital hypothyroidism. Here, we conducted a targeted next-generation sequencing assessment of congenital hypothyroidism-causative genes in a cohort of nine unrelated pediatric patients suspected of having a congenital iodide transport defect based on the absence of 99mTc-pertechnetate accumulation in a eutopic thyroid gland. Although, unexpectedly, we could not detect pathogenic SLC5A5 gene variants, we identified two novel compound heterozygous TG gene variants (p.Q29* and c.177-2A>C), three novel heterozygous TG gene variants (p.F1542Vfs*20, p.Y2563C, and p.S523P), and a novel heterozygous DUOX2 gene variant (p.E1496Dfs*51). Splicing minigene reporter-based in vitro assays revealed that the variant c.177-2A>C affected normal TG pre-mRNA splicing, leading to the frameshift variant p.T59Sfs*17. The frameshift TG variants p.T59Sfs*17 and p.F1542Vfs*20, but not the DUOX2 variant p.E1496Dfs*51, were predicted to undergo nonsense-mediated decay. Moreover, functional in vitro expression assays revealed that the variant p.Y2563C reduced the secretion of the TG protein. Our investigation revealed unexpected findings regarding the genetics of congenital iodide transport defects, supporting the existence of yet to be discovered mechanisms involved in thyroid hormonogenesis.


Subject(s)
Congenital Hypothyroidism , Thyroglobulin , Child , Congenital Hypothyroidism/genetics , Dual Oxidases/genetics , High-Throughput Nucleotide Sequencing , Humans , Iodides/metabolism , Mutation , Thyroglobulin/genetics
3.
Front Endocrinol (Lausanne) ; 13: 868891, 2022.
Article in English | MEDLINE | ID: mdl-35600585

ABSTRACT

Background: Congenital iodide transport defect (ITD) is an uncommon cause of dyshormonogenic congenital hypothyroidism characterized by the absence of active iodide accumulation in the thyroid gland. ITD is an autosomal recessive disorder caused by loss-of-function variants in the sodium/iodide symporter (NIS)-coding SLC5A5 gene. Objective: We aimed to identify, and if so to functionally characterize, novel ITD-causing SLC5A5 gene variants in a cohort of five unrelated pediatric patients diagnosed with dyshormonogenic congenital hypothyroidism with minimal to absent 99mTc-pertechnetate accumulation in the thyroid gland. Methods: The coding region of the SLC5A5 gene was sequenced using Sanger sequencing. In silico analysis and functional in vitro characterization of a novel synonymous variant were performed. Results: Sanger sequencing revealed a novel homozygous synonymous SLC5A5 gene variant (c.1326A>C in exon 11). In silico analysis revealed that the c.1326A>C variant is potentially deleterious for NIS pre-mRNA splicing. The c.1326A>C variant was predicted to lie within a putative exonic splicing enhancer reducing the binding of splicing regulatory trans-acting protein SRSF5. Splicing minigene reporter assay revealed that c.1326A>C causes exon 11 or exon 11 and 12 skipping during NIS pre-mRNA splicing leading to the NIS pathogenic variants p.G415_P443del and p.G415Lfs*32, respectively. Significantly, the frameshift variant p.G415Lfs*32 is predicted to be subjected to degradation by nonsense-mediated decay. Conclusions: We identified the first exonic synonymous SLC5A5 gene variant causing aberrant NIS pre-mRNA splicing, thus expanding the mutational landscape of the SLC5A5 gene leading to dyshormonogenic congenital hypothyroidism.


Subject(s)
Congenital Hypothyroidism , Symporters , Child , Congenital Hypothyroidism/genetics , Exons , Humans , Iodides/metabolism , RNA Precursors , Symporters/genetics
4.
Thyroid ; 32(1): 19-27, 2022 01.
Article in English | MEDLINE | ID: mdl-34726525

ABSTRACT

Background: The sodium/iodide symporter (NIS) mediates active iodide accumulation in the thyroid follicular cell. Autosomal recessive iodide transport defect (ITD)-causing loss-of-function NIS variants lead to dyshormonogenic congenital hypothyroidism due to deficient iodide accumulation for thyroid hormonogenesis. Here, we aimed to identify, and if so to functionally characterize, novel ITD-causing NIS pathogenic variants in a patient diagnosed with severe dyshormonogenic congenital hypothyroidism due to a defect in iodide accumulation in the thyroid follicular cell, as suggested by nondetectable radioiodide accumulation in a normally located thyroid gland, as well as in salivary glands. Methods: The proposita NIS-coding SLC5A5 gene was sequenced using Sanger sequencing. In silico analysis and functional in vitro characterization of the novel NIS variants were performed. Results: Sanger sequencing revealed novel compound heterozygous SLC5A5 gene variants (c.970-3C>A and c.1106A>T, p.D369V). In silico analysis suggested that c.970-3C>A disrupts the canonical splice acceptor site located in intron 7. Splicing minigene reporter assay revealed that c.970-3C>A causes exon 8 skipping during NIS pre-mRNA splicing leading to the NIS pathogenic variant p.Y324Hfs*148. Moreover, in silico analysis indicated p.D369V as pathogenic. Functional in vitro studies demonstrated that p.D369V NIS does not mediate iodide accumulation, as p.D369V causes NIS to be retained in the endoplasmic reticulum. Mechanistically, we propose an intramolecular ionic interaction involving the ß carboxyl group of D369 and the guanidinium group of R130, located in transmembrane segment 4. Of note, an Asp residue at position 369-which is highly conserved in SLC5A family members-is required for functional NIS expression at the plasma membrane. Conclusions: We uncovered a critical intramolecular interaction between R130 and D369 required for NIS maturation and plasma membrane expression. Moreover, we identified the first intronic variant causing aberrant NIS pre-mRNA splicing, thus expanding the mutational landscape in the SLC5A5 gene leading to dyshormonogenic congenital hypothyroidism.


Subject(s)
Cell Membrane/drug effects , Congenital Hypothyroidism/drug therapy , Symporters/drug effects , Cell Membrane/physiology , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/metabolism , Humans , Thyroid Gland/metabolism
5.
FASEB J ; 35(8): e21681, 2021 08.
Article in English | MEDLINE | ID: mdl-34196428

ABSTRACT

The sodium/iodide symporter (NIS) expresses at the basolateral plasma membrane of the thyroid follicular cell and mediates iodide accumulation required for normal thyroid hormonogenesis. Loss-of-function NIS variants cause congenital hypothyroidism due to impaired iodide accumulation in thyroid follicular cells underscoring the significance of NIS for thyroid physiology. Here we report novel findings derived from the thorough characterization of the nonsense NIS mutant p.R636* NIS-leading to a truncated protein missing the last eight amino acids-identified in twins with congenital hypothyroidism. R636* NIS is severely mislocalized into intracellular vesicular compartments due to the lack of a conserved carboxy-terminal type 1 PDZ-binding motif. As a result, R636* NIS is barely targeted to the plasma membrane and therefore iodide transport is reduced. Deletion of the PDZ-binding motif causes NIS accumulation into late endosomes and lysosomes. Using PDZ domain arrays, we revealed that the PDZ-domain containing protein SCRIB binds to the carboxy-terminus of NIS by a PDZ-PDZ interaction. Furthermore, in CRISPR/Cas9-based SCRIB deficient cells, NIS expression at the basolateral plasma membrane is compromised, leading to NIS localization into intracellular vesicular compartments. We conclude that the PDZ-binding motif is a plasma membrane retention signal that participates in the polarized expression of NIS by selectively interacting with the PDZ-domain containing protein SCRIB, thus retaining the transporter at the basolateral plasma membrane. Our data provide insights into the molecular mechanisms that regulate NIS expression at the plasma membrane, a topic of great interest in the thyroid cancer field considering the relevance of NIS-mediated radioactive iodide therapy for differentiated thyroid carcinoma.


Subject(s)
Membrane Proteins/metabolism , Symporters/metabolism , Tumor Suppressor Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Membrane/metabolism , Codon, Nonsense , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/metabolism , Conserved Sequence , Dogs , Endosomes/metabolism , HEK293 Cells , Humans , Lysosomes/metabolism , Madin Darby Canine Kidney Cells , Membrane Proteins/chemistry , Membrane Proteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , PDZ Domains/genetics , Protein Structure, Secondary , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Symporters/chemistry , Symporters/genetics , Thyroid Gland/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics
6.
J Clin Endocrinol Metab ; 106(7): 1867-1881, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33912899

ABSTRACT

CONTEXT: Iodide transport defect (ITD) (Online Mendelian Inheritance in Man No. 274400) is an uncommon cause of dyshormonogenic congenital hypothyroidism due to loss-of-function variants in the SLC5A5 gene, which encodes the sodium/iodide symporter (NIS), causing deficient iodide accumulation in thyroid follicular cells. OBJECTIVE: This work aims to determine the molecular basis of a patient's ITD clinical phenotype. METHODS: The propositus was diagnosed with dyshormonogenic congenital hypothyroidism with minimal 99mTc-pertechnetate accumulation in a eutopic thyroid gland. The propositus SLC5A5 gene was sequenced. Functional in vitro characterization of the novel NIS variant was performed. RESULTS: Sanger sequencing revealed a novel homozygous missense p.G561E NIS variant. Mechanistically, the G561E substitution reduces iodide uptake, because targeting of G561E NIS to the plasma membrane is reduced. Biochemical analyses revealed that G561E impairs the recognition of an adjacent tryptophan-acidic motif by the kinesin-1 subunit kinesin light chain 2 (KLC2), interfering with NIS maturation beyond the endoplasmic reticulum, and reducing iodide accumulation. Structural bioinformatic analysis suggests that G561E shifts the equilibrium of the unstructured tryptophan-acidic motif toward a more structured conformation unrecognizable to KLC2. Consistently, knockdown of Klc2 causes defective NIS maturation and consequently decreases iodide accumulation in rat thyroid cells. Morpholino knockdown of klc2 reduces thyroid hormone synthesis in zebrafish larvae leading to a hypothyroid state as revealed by expression profiling of key genes related to the hypothalamic-pituitary-thyroid axis. CONCLUSION: We report a novel NIS pathogenic variant associated with dyshormonogenic congenital hypothyroidism. Detailed molecular characterization of G561E NIS uncovered the significance of KLC2 in thyroid physiology.


Subject(s)
Congenital Hypothyroidism/genetics , Metabolism, Inborn Errors/genetics , Microtubule-Associated Proteins/metabolism , Symporters/genetics , Thyroid Hormones/metabolism , Animals , Humans , Infant, Newborn , Iodides/metabolism , Kinesins , Male , Mutation, Missense , Phenotype , Rats , Thyroid Gland/metabolism
7.
Thyroid ; 31(2): 299-314, 2021 02.
Article in English | MEDLINE | ID: mdl-32935630

ABSTRACT

Background: The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor is a key regulator of cell survival, proliferation, and gene expression. Although activation of NF-κB signaling in thyroid follicular cells after thyrotropin (TSH) receptor (TSHR) engagement has been reported, the downstream signaling leading to NF-κB activation remains unexplored. Here, we sought to elucidate the mechanisms that regulate NF-κB signaling activation in response to TSH stimulation. Methods: Fisher rat-derived thyroid cell lines and primary cultures of NF-κB essential modulator (NEMO)-deficient mice thyrocytes were used as models. Signaling pathways leading to the activation of NF-κB were investigated by using chemical inhibitors and phospho-specific antibodies. Luciferase reporter gene assays and site-directed mutagenesis were used to monitor NF-κB-dependent gene transcriptional activity and the expression of thyroid differentiation markers was assessed by reverse transcription quantitative polymerase chain reaction and Western blot, respectively. Chromatin immunoprecipitation (ChIP) was carried out to investigate NF-κB subunit p65 DNA binding, and small interfering RNA (siRNA)-mediated gene knockdown approaches were used for studying gene function. Results: Using thyroid cell lines, we observed that TSH treatment leads to protein kinase C (PKC)-mediated canonical NF-κB p65 subunit nuclear expression. Moreover, TSH stimulation phosphorylated the kinase TAK-1, and its knockdown abolished TSH-induced NF-κB transcriptional activity. TSH induced the transcriptional activity of the NF-κB subunit p65 in a protein kinase A (PKA)-dependent phosphorylation at Ser-276. In addition, p65 phosphorylation at Ser-276 induced acetyl transferase p300 recruitment, leading to its acetylation on Lys-310 and thereby enhancing its transcriptional activity. Evaluation of the role played by NF-κB in thyroid physiology demonstrated that the canonical NF-κB inhibitor BAY 11-7082 reduced TSH-induced expression of thyroid differentiation markers. The involvement of NF-κB signaling in thyroid physiology was confirmed by assessing the TSH-induced gene expression in primary cultures of NEMO-deficient mice thyrocytes. ChIP and the knockdown experiments revealed that p65 is a nuclear effector of TSH actions, inducing the transcripcional expression of thyroid differentiation markers. Conclusions: Taken together, our results point to NF-κB being a pivotal mediator in the TSH-induced thyroid follicular cell differentiation, a relevant finding with potential physiological and pathophysiological implications.


Subject(s)
Cell Differentiation/drug effects , Thyroid Gland/drug effects , Thyrotropin/pharmacology , Transcription Factor RelA/metabolism , Acetylation , Animals , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Kinase Kinases/metabolism , Mice, Knockout , Phosphorylation , Protein Kinase C/metabolism , Rats, Inbred F344 , Signal Transduction , Thyroid Gland/metabolism , Transcription Factor RelA/genetics , p300-CBP Transcription Factors/metabolism
8.
Int J Pharm ; 591: 119985, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33069891

ABSTRACT

Androgens play a central role in homeostatic and pathological processes of the prostate gland. At the cellular level, testosterone activates both the genomic signaling pathway, through the intracellular androgen receptor (AR), and membrane-initiated androgen signaling (MIAS), by plasma membrane receptors. We have previously shown that the activation of MIAS induces uncontrolled proliferation and fails to stimulate the beneficial immunomodulatory effects of testosterone in prostatic cells, becoming necessary to investigate if genomic signaling mediates homeostatic effects of testosterone. However, the lack of specific modulators for genomic androgen signaling has delayed the understanding of this mechanism. In this article, we demonstrate that monosialoganglioside (GM1) micelles are capable of delivering testosterone into the cytoplasm to specifically activate genomic signaling. Stimulation with testosterone-loaded GM1 micelles led to the activation of androgen response element (ARE)-regulated genes in vitro as well as to the recovery of normal prostate size and histology after castration in mice. In addition, these micelles avoided MIAS, as demonstrated by the absence of rapid signaling pathway activation and the inability to induce uncontrolled cell proliferation. In conclusion, our results validate a novel tool for the specific activation of genomic androgen signaling and demonstrate the importance of selective pathway activation in androgen-mediated proliferation.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Androgens , Animals , G(M1) Ganglioside , Genomics , Humans , Male , Mice , Micelles , Receptors, Androgen/genetics , Signal Transduction , Testosterone
9.
Thyroid ; 29(7): 1023-1026, 2019 07.
Article in English | MEDLINE | ID: mdl-31115276

ABSTRACT

Iodide transport defect (ITD) is an autosomal recessive disorder caused by deficient iodide accumulation into the thyroid follicular cell. ITD is an uncommon cause of dyshormonogenetic congenital hypothyroidism that results from inactivating mutations in the sodium/iodide symporter (NIS)-coding SLC5A5 gene. NIS is a key basolateral plasma membrane glycoprotein that efficiently mediates active iodide uptake in the thyroid-constituting the first step in the biosynthesis of the iodine-containing thyroid hormones-and other tissues, including salivary glands, lactating breast, and small intestine. The proposita, a 20-day-old female born in 1992, was diagnosed with congenital hypothyroidism through newborn screening. ITD was suspected on the basis of nondetectable radioiodide accumulation in a normally located nongoitrous thyroid gland, as well as in salivary glands. Sanger sequencing revealed nonpreviously reported compound heterozygous missense SLC5A5 gene variants (c.991G>A, p.D331N and c.1.641C>A, p.S547R). Notably, these variants have not been reported in public databases (i.e., Exome Aggregation Consortium, 1000 Genomes, and Single Nucleotide Polymorphism). In silico analysis using prediction softwares (i.e., SIFT, Polyphen-2, and MutationTaster2) support the pathologic significance of p.D331N and p.S547R NIS. Moreover, functional in vitro studies demonstrate that D331N and S547R NIS severely reduce iodide uptake when the proteins are heterologously expressed in HEK-293T cells because of a pronounced impairment of D331N and S547R NIS targeting to the plasma membrane. Of note, a charged residue at position 331 and a serine residue at position 547-which are highly conserved in SLC5A family members-are required for NIS plasma membrane targeting. We report two novel missense pathogenic variants in a compound heterozygous state in the SLC5A5 gene, detected through Sanger sequencing, in a pediatric female patient with dyshormonogenic congenital hypothyroidism.


Subject(s)
Congenital Hypothyroidism/genetics , Symporters/genetics , Adolescent , Child, Preschool , Congenital Hypothyroidism/blood , Congenital Hypothyroidism/drug therapy , Female , Heterozygote , Humans , Infant, Newborn , Neonatal Screening , Thyrotropin/blood , Thyroxine/therapeutic use
10.
J Endocr Soc ; 3(1): 222-234, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30620007

ABSTRACT

Iodine is a crucial component of thyroid hormones; therefore, a key requirement for thyroid hormone biosynthesis is that iodide (I-) be actively accumulated in the thyroid follicular cell. The ability of the thyroid epithelia to concentrate I- is ultimately dependent on functional Na+/ I- symporter (NIS) expression at the plasma membrane. Underscoring the significance of NIS for thyroid physiology, loss-of-function mutations in the NIS-coding SLC5A5 gene cause an I- transport defect, resulting in dyshormonogenic congenital hypothyroidism. Moreover, I- accumulation in the thyroid cell constitutes the cornerstone for radioiodide ablation therapy for differentiated thyroid carcinoma. However, differentiated thyroid tumors often exhibit reduced (or even undetectable) I- transport compared with normal thyroid tissue, and they are diagnosed as cold nodules on thyroid scintigraphy. Paradoxically, immunohistochemistry analysis revealed that cold thyroid nodules do not express NIS or express normal, or even higher NIS levels compared with adjacent normal tissue, but NIS is frequently intracellularly retained, suggesting the presence of posttranslational abnormalities in the transport of the protein to the plasma membrane. Ultimately, a thorough comprehension of the mechanisms that regulate NIS transport to the plasma membrane would have multiple implications for radioiodide therapy, opening the possibility to identify new molecular targets to treat radioiodide-refractory thyroid tumors. Therefore, in this review, we discuss the current knowledge regarding posttranslational mechanisms that regulate NIS transport to the plasma membrane under physiological and pathological conditions affecting the thyroid follicular cell, a topic of great interest in the thyroid cancer field.

11.
Endocrinology ; 160(1): 156-168, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30496374

ABSTRACT

The Na+/iodide (I-) symporter (NIS), a glycoprotein expressed at the basolateral plasma membrane of thyroid follicular cells, mediates I- accumulation for thyroid hormonogenesis and radioiodide therapy for differentiated thyroid carcinoma. However, differentiated thyroid tumors often exhibit lower I- transport than normal thyroid tissue (or even undetectable I- transport). Paradoxically, the majority of differentiated thyroid cancers show intracellular NIS expression, suggesting abnormal targeting to the plasma membrane. Therefore, a thorough understanding of the mechanisms that regulate NIS plasma membrane transport would have multiple implications for radioiodide therapy. In this study, we show that the intracellularly facing carboxy-terminus of NIS is required for the transport of the protein to the plasma membrane. Moreover, the carboxy-terminus contains dominant basolateral information. Using internal deletions and site-directed mutagenesis at the carboxy-terminus, we identified a highly conserved monoleucine-based sorting motif that determines NIS basolateral expression. Furthermore, in clathrin adaptor protein (AP)-1B-deficient cells, NIS sorting to the basolateral plasma membrane is compromised, causing the protein to also be expressed at the apical plasma membrane. Computer simulations suggest that the AP-1B subunit σ1 recognizes the monoleucine-based sorting motif in NIS carboxy-terminus. Although the mechanisms by which NIS is intracellularly retained in thyroid cancer remain elusive, our findings may open up avenues for identifying molecular targets that can be used to treat radioiodide-refractory thyroid tumors that express NIS intracellularly.


Subject(s)
Cell Membrane/metabolism , Symporters/chemistry , Symporters/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Biological Transport , Cell Membrane/genetics , Humans , Iodides/metabolism , Leucine/genetics , Leucine/metabolism , Protein Transport , Rats , Sequence Alignment , Symporters/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism
12.
Mol Cancer Res ; 16(5): 833-845, 2018 05.
Article in English | MEDLINE | ID: mdl-29523762

ABSTRACT

Emerging evidence suggests that unregulated Toll-like receptor (TLR) signaling promotes tumor survival signals, thus favoring tumor progression. Here, the mechanism underlying TLR4 overexpression in papillary thyroid carcinomas (PTC) mainly harboring the BRAFV600E mutation was studied. TLR4 was overexpressed in PTC compared with nonneoplastic thyroid tissue. Moreover, paired clinical specimens of primary PTC and its lymph node metastasis showed a significant upregulation of TLR4 levels in the metastatic tissues. In agreement, conditional BRAFV600E expression in normal rat thyroid cells and mouse thyroid tissue upregulated TLR4 expression levels. Furthermore, functional TLR4 expression was demonstrated in PTC cells by increased NF-κB transcriptional activity in response to the exogenous TLR4-agonist lipopolysaccharide. Of note, The Cancer Genome Atlas data analysis revealed that BRAFV600E-positive tumors with high TLR4 expression were associated with shorter disease-free survival. Transcriptomic data analysis indicated a positive correlation between TLR4 expression levels and MAPK/ERK signaling activation. Consistently, chemical blockade of MAPK/ERK signaling abrogated BRAFV600E-induced TLR4 expression. A detailed study of the TLR4 promoter revealed a critical MAPK/ERK-sensitive Ets-binding site involved in BRAFV600E responsiveness. Subsequent investigation revealed that the Ets-binding factor ETS1 is critical for BRAFV600E-induced MAPK/ERK signaling-dependent TLR4 gene expression. Together, these data indicate that functional TLR4 overexpression in PTCs is a consequence of thyroid tumor-oncogenic driver dysregulation of MAPK/ERK/ETS1 signaling.Implications: Considering the participation of aberrant NF-κB signaling activation in the promotion of thyroid tumor growth and the association of high TLR4 expression with more aggressive tumors, this study suggests a prooncogenic potential of TLR4 downstream signaling in thyroid tumorigenesis. Mol Cancer Res; 16(5); 833-45. ©2018 AACR.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Toll-Like Receptor 4/metabolism , Animals , Female , Humans , Male , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinases/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Rats , Rats, Inbred F344 , Signal Transduction , Thyroid Cancer, Papillary/pathology , Toll-Like Receptor 4/genetics , Transfection
13.
Mol Cell Endocrinol ; 420: 105-15, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26610751

ABSTRACT

Thyroid peroxidase (TPO) is essential for thyroid hormone synthesis mediating the covalent incorporation of iodine into tyrosine residues of thyroglobulin process known as organification. Thyroid-stimulating hormone (TSH) via cAMP signaling is the main hormonal regulator of TPO gene expression. In thyroid cells, TSH-stimulated nitric oxide (NO) production inhibits TSH-induced thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Indeed, NO donors downregulate TSH-induced iodide accumulation and organification in thyroid cells. Here, using FRTL-5 thyroid cells as model, we obtained insights into the molecular mechanism underlying the inhibitory effects of NO on iodide organification. We demonstrated that NO donors inhibited TSH-stimulated TPO expression by inducing a cyclic guanosine monophosphate-dependent protein kinase-mediated transcriptional repression of the TPO gene. Moreover, we characterized the FoxE1 binding site Z as mediator of the NO-inhibited TPO expression. Mechanistically, we demonstrated that NO decreases TSH-induced FoxE1 expression, thus repressing the transcripcional activation of TPO gene. Taken together, we provide novel evidence reinforcing the inhibitory role of NO on thyroid cell function, an observation of potential pathophysiological relevance associated with human thyroid pathologies that come along with changes in the NO production.


Subject(s)
Forkhead Transcription Factors/metabolism , Iodide Peroxidase/metabolism , Nitric Oxide/metabolism , Thyrotropin/pharmacology , Animals , Cattle , Cell Line , Cyclic AMP/pharmacology , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Down-Regulation/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Iodide Peroxidase/genetics , Nitric Oxide Donors/pharmacology , Nitrites/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Rats , Signal Transduction/drug effects , Transcription, Genetic/drug effects
14.
Endocrinology ; 156(12): 4741-54, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26587909

ABSTRACT

Nitric oxide (NO) is a ubiquitous signaling molecule involved in a wide variety of cellular physiological processes. In thyroid cells, NO-synthase III-endogenously produced NO reduces TSH-stimulated thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Further studies indicate that NO induces thyroid dedifferentiation, because NO donors repress TSH-stimulated iodide (I(-)) uptake. Here, we investigated the molecular mechanism underlying the NO-inhibited Na(+)/I(-) symporter (NIS)-mediated I(-) uptake in thyroid cells. We showed that NO donors reduce I(-) uptake in a concentration-dependent manner, which correlates with decreased NIS protein expression. NO-reduced I(-) uptake results from transcriptional repression of NIS gene rather than posttranslational modifications reducing functional NIS expression at the plasma membrane. We observed that NO donors repress TSH-induced NIS gene expression by reducing the transcriptional activity of the nuclear factor-κB subunit p65. NO-promoted p65 S-nitrosylation reduces p65-mediated transactivation of the NIS promoter in response to TSH stimulation. Overall, our data are consistent with the notion that NO plays a role as an inhibitory signal to counterbalance TSH-stimulated nuclear factor-κB activation, thus modulating thyroid hormone biosynthesis.


Subject(s)
Gene Expression Regulation/drug effects , Iodine/metabolism , Nitric Oxide Donors/pharmacology , RNA, Messenger/drug effects , Symporters/drug effects , Thyroid Gland/drug effects , Thyrotropin/metabolism , Transcription Factor RelA/drug effects , Transcriptional Activation/drug effects , Animals , Autocrine Communication , Cell Line , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitroprusside/pharmacology , Promoter Regions, Genetic , RNA, Messenger/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction , S-Nitrosoglutathione/pharmacology , Spermine/analogs & derivatives , Spermine/pharmacology , Symporters/genetics , Thyroid Gland/cytology , Thyroid Gland/metabolism , Transcription Factor RelA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...