Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Exp Cell Res ; 384(2): 111643, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31557464

ABSTRACT

Human hepatocarcinogenesis is a complex process with many unresolved issues, including the cell of origin (differentiated and/or progenitor/stem cells) and the initial steps leading to tumor development. With the aim of providing new tools for studying hepatocellular carcinoma initiation and progression, we developed an innovative model based on primary human hepatocytes (PHHs) lentivirus-transduced with SV40LT+ST, HRASV12 with or without hTERT. The differentiation status of these transduced-PHHs was characterized by RNA sequencing (including lncRNAs), and the expression of some differentiation markers confirmed by RT-qPCR and immunofluorescence. In addition, their transformation capacity was assessed by colony formation in soft agar and tumorigenicity evaluated in immune-deficient mice. The co-expression of SV40LT+ST and HRASV12 in PHHs, in association or not with hTERT, led to the emergence of transformed clones. These clones exhibited a poorly differentiated cell phenotype with expression of stemness and mesenchymal-epithelial transition markers and gave rise to cancer stem cell subpopulations. In vivo, they resulted in poorly differentiated hepatocellular carcinomas with a reactivation of endogenous hTERT. These experiments demonstrate for the first time that non-cycling human mature hepatocytes can be permissive to in vitro transformation. This cellular tool provides the first comprehensive in vitro model for identifying genetic/epigenetic changes driving human hepatocarcinogenesis.


Subject(s)
Cell Transformation, Neoplastic/genetics , Epigenesis, Genetic/genetics , Epithelial-Mesenchymal Transition/genetics , Hepatocytes/pathology , Neoplastic Stem Cells/pathology , Animals , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Differentiation/genetics , Cell Line , Cell Line, Tumor , Cell Transformation, Neoplastic/pathology , Female , HEK293 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude
3.
J Hepatol ; 71(4): 763-772, 2019 10.
Article in English | MEDLINE | ID: mdl-31220470

ABSTRACT

BACKGROUND & AIMS: Low levels of toll-like receptor 3 (TLR3) in patients with hepatocellular carcinoma (HCC) are associated with poor prognosis, primarily owing to the loss of inflammatory signaling and subsequent lack of immune cell recruitment to the liver. Herein, we explore the role of TLR3-triggered apoptosis in HCC cells. METHODS: Quantitative reverse transcription PCR, western blotting, immunohistochemistry and comparative genomic hybridization were used to analyze human and mouse HCC cell lines, as well as surgically resected primary human HCCs, and to study the impact of TLR3 expression on patient outcomes. Functional analyses were performed in HCC cells, following the restoration of TLR3 by lentiviral transduction. The role of TLR3-triggered apoptosis in HCC was analyzed in vivo in a transgenic mouse model of HCC. RESULTS: Lower expression of TLR3 in tumor compared to non-tumor matched tissue was observed at both mRNA and protein levels in primary HCC, and was predictive of shorter recurrence-free survival after surgical resection in both univariate (hazard ratio [HR] 1.79; 95% CI 1.04-3.06; p = 0.03) and multivariate analyses (HR 1.73; CI 1.01-2.97; p = 0.04). Immunohistochemistry confirmed frequent downregulation of TLR3 in human and mouse primary HCC cells. None of the 6 human HCC cell lines analyzed expressed TLR3, and ectopic expression of TLR3 following lentiviral transduction not only restored the inflammatory response but also sensitized cells to TLR3-triggered apoptosis. Lastly, in the transgenic mouse model of HCC, absence of TLR3 expression was accompanied by a lower rate of preneoplastic hepatocyte apoptosis and accelerated hepatocarcinogenesis without altering the tumor immune infiltrate. CONCLUSION: Downregulation of TLR3 protects transforming hepatocytes from direct TLR3-triggered apoptosis, thereby contributing to hepatocarcinogenesis and poor patient outcome. LAY SUMMARY: Hepatocellular carcinoma (HCC) is a heterogeneous disease associated with a poor prognosis. In patients with HCC, TLR3 downregulation is associated with reduced survival. Herein, we show that the absence of TLR3 is associated with a lower rate of apoptosis, and subsequently more rapid hepatocarcinogenesis, without any change to the immune infiltrate in the liver. Therefore, the poor prognosis associated with low TLR3 expression in HCC is likely linked to tumors ability to escape apoptosis. TLR3 may become a promising therapeutic target in TLR3-positive HCC.


Subject(s)
Carcinogenesis/metabolism , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Prognosis , Toll-Like Receptor 3/genetics , Animals , Apoptosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Female , Hepatectomy/methods , Hepatectomy/mortality , Humans , Kaplan-Meier Estimate , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Male , Mice , Middle Aged , Signal Transduction
4.
BMC Vet Res ; 14(1): 133, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29673363

ABSTRACT

BACKGROUND: Effective vaccines against porcine reproductive and respiratory syndrome virus (PRRSV), especially against highly pathogenic (HP) PRRSV are still missing. The objective of this study was to evaluate the protective efficacy of an experimental live attenuated PRRSV 2 vaccine, composed of two strains, against heterologous challenge with a Vietnamese HP PRRSV 2 field strain. For this reason, 20 PRRSV negative piglets were divided into two groups. The pigs of group 1 were vaccinated with the experimental vaccine, group 2 remained unvaccinated. All study piglets received an intranasal challenge of the HP PRRSV 2 on day 0 of the study (42 days after vaccination). Blood samples were taken on days 7 and 21 after vaccination and on several days after challenge. On day 28 after challenge, all piglets were euthanized and pathologically examined. RESULTS: On days 7 and 21 after vaccination, a PRRSV 2 viraemia was seen in all piglets of group 1 which remained detectable in seven piglets up to 42 days after vaccination. On day 3 after challenge, all piglets from both groups were positive in PRRSV 2 RT-qPCR. From day 7 onwards, viral load and number of PRRSV 2 positive pigs were lower in group 1 than in group 2. All pigs of group 1 seroconverted after PRRSV 2 vaccination. PRRSV antibodies were detected in serum of all study pigs from both groups from day 14 after challenge onwards. In group 2, moderate respiratory symptoms with occasional coughing were seen following the challenge with HP PRRSV 2. Pigs of group 1 remained clinically unaffected. Interstitial pneumonia was found in four piglets of group 1 and in all ten piglets of group 2. Histopathological findings were more severe in group 2. CONCLUSIONS: It was thus concluded that the used PRRSV 2 live experimental vaccine provided protection from clinical disease and marked reduction of histopathological findings and viral load in pigs challenged with a Vietnamese HP PRRSV 2 field strain.


Subject(s)
Porcine Reproductive and Respiratory Syndrome/prevention & control , Porcine respiratory and reproductive syndrome virus/immunology , Viral Vaccines/therapeutic use , Animals , Enzyme-Linked Immunosorbent Assay/veterinary , Male , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/genetics , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/veterinary , Sequence Analysis, DNA/veterinary , Swine/immunology , Swine/virology , Treatment Outcome , Vaccines, Attenuated/therapeutic use , Viral Vaccines/immunology
5.
Genome Announc ; 5(22)2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28572326

ABSTRACT

This paper provides information on the complete genome sequence of a porcine reproductive and respiratory syndrome virus (PRRSV) strain isolated on a French pig farm which was identified as a recombinant strain from two commercial modified live virus vaccine strains of genotype 1 (VP-046BIS and DV strains).

6.
Cancer Res ; 77(2): 268-278, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27742687

ABSTRACT

Lysyl oxidase (LOX) is a secreted copper-dependent amine oxidase whose primary function is to drive collagen crosslinking and extracellular matrix stiffness. LOX in colorectal cancer synergizes with hypoxia-inducible factor-1 (HIF-1) to promote tumor progression. Here we investigated whether LOX/HIF1 endows colorectal cancer cells with full competence for aggressive colonization in bone. We show that a high LOX expression in primary tumors from patients with colorectal cancer was associated with poor clinical outcome, irrespective of HIF-1 In addition, LOX was expressed by tumor cells in the bone marrow from colorectal cancer patients with bone metastases. In vivo experimental studies show that LOX overexpression in colorectal cancer cells or systemic delivery of the conditioned medium from LOX-overexpressing colorectal cancer cells promoted tumor cell dissemination in the bone marrow and enhanced osteolytic lesion formation, irrespective of HIF-1 Conversely, silencing or pharmacologic inhibition of LOX activity blocked dissemination of colorectal cancer cells in the bone marrow and tumor-driven osteolytic lesion formation. In vitro, tumor-secreted LOX supported the attachment and survival of colorectal cancer cells to and in the bone matrix, and inhibited osteoblast differentiation. LOX overexpression in colorectal cancer cells also induced a robust production of IL6. In turn, both LOX and IL6 were acting in concert to promote RANKL-dependent osteoclast differentiation, thereby creating an imbalance between bone resorption and bone formation. Collectively, our findings show that LOX supports colorectal cancer cell dissemination in the bone marrow and they reveal a novel mechanism through which LOX-driven IL6 production by colorectal cancer cells impairs bone homeostasis. Cancer Res; 77(2); 268-78. ©2016 AACR.


Subject(s)
Bone Neoplasms/secondary , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/secondary , Neoplasm Invasiveness/pathology , Protein-Lysine 6-Oxidase/metabolism , Animals , Blotting, Western , Bone and Bones/metabolism , Bone and Bones/pathology , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Female , Heterografts , Humans , Immunohistochemistry , Interleukin-6/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Real-Time Polymerase Chain Reaction
7.
J Hepatol ; 59(5): 1107-17, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23835194

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. HCC can be cured by radical therapies if early diagnosis is done while the tumor has remained of small size. Unfortunately, diagnosis is commonly late when the tumor has grown and spread. Thus, palliative approaches are usually applied such as transarterial intrahepatic chemoembolization and sorafenib, an anti-angiogenic agent and MAP kinase inhibitor. This latter is the only targeted therapy that has shown significant, although moderate, efficiency in some individuals with advanced HCC. This highlights the need to develop other targeted therapies, and to this goal, to identify more and more pathways as potential targets. The Wnt pathway is a key component of a physiological process involved in embryonic development and tissue homeostasis. Activation of this pathway occurs when a Wnt ligand binds to a Frizzled (FZD) receptor at the cell membrane. Two different Wnt signaling cascades have been identified, called non-canonical and canonical pathways, the latter involving the ß-catenin protein. Deregulation of the Wnt pathway is an early event in hepatocarcinogenesis and has been associated with an aggressive HCC phenotype, since it is implicated both in cell survival, proliferation, migration and invasion. Thus, component proteins identified in this pathway are potential candidates of pharmacological intervention. This review focuses on the characteristics and functions of the molecular targets of the Wnt signaling cascade and how they may be manipulated to achieve anti-tumor effects.


Subject(s)
Antineoplastic Agents/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/physiopathology , Molecular Targeted Therapy/methods , Signal Transduction/physiology , Wnt Proteins/physiology , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/physiopathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Liver Neoplasms/pathology , Signal Transduction/drug effects , Treatment Outcome , Wnt Proteins/drug effects
8.
Cancer Res ; 71(5): 1647-57, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21239473

ABSTRACT

Adaptation to hypoxia is a driving force for tumor progression that leads to therapy resistance and poor clinical outcome. Hypoxic responses are mainly mediated by hypoxia-inducible transcription factor-1 (HIF-1). One critical HIF-1 target mediating tumor progression is lysyl oxidase (LOX), which catalyzes cross-linking of collagens and elastin in the extracellular matrix, thereby regulating tissue tensile strength. Paradoxically, LOX has been reported to be both upregulated and downregulated in cancer cells, especially in colorectal cancer. Thus, we hypothesized that LOX might regulate expression of HIF-1 to create a self-timing regulatory circuit. Using human colorectal carcinoma cell lines in which HIF-1 and LOX expression could be modulated, we showed that LOX induction enhanced HIF-1 expression, whereas LOX silencing reduced it. Mechanistic investigations revealed that LOX activated the PI3K (phosphoinositide 3-kinase)-Akt signaling pathway, thereby upregulating HIF-1α protein synthesis in a manner requiring LOX-mediated hydrogen peroxide production. Consistent with these results, cancer cell proliferation was stimulated by secreted and active LOX in an HIF-1α-dependent fashion. Furthermore, nude mice xenograft assays established that HIF-1 potentiated LOX action on tumor growth in vivo. Taken together, these findings provide compelling evidence that LOX and HIF-1 act in synergy to foster tumor formation, and they suggest that HIF-1/LOX mutual regulation is a pivotal mechanism in the adaptation of tumor cells to hypoxia.


Subject(s)
Colorectal Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Protein-Lysine 6-Oxidase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Animals , Cell Hypoxia/physiology , Cell Line, Tumor , Cell Proliferation , Feedback, Physiological/physiology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/physiology , Humans , Immunohistochemistry , Mice , Mice, Nude , Reverse Transcriptase Polymerase Chain Reaction
9.
Exp Dermatol ; 19(12): 1080-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20812961

ABSTRACT

Lysyl Oxidase (LOX) is an extracellular enzyme involved in the maturation of connective tissues. It also acts in many cell types as a regulator of cell behaviour and phenotype through intracellular signalling pathways. Recently, LOX was shown to be present in human epidermis where its precise functions remain unclear. We showed here that in confluent monolayer cultures of normal human keratinocytes (KCs) and N/TERT-1-immortalized KCs, LOX expression was induced during the first differentiation steps. Moreover, the silencing of LOX by stable RNA interference disrupted the expression of early differentiation markers. In a reconstructed-epidermis model, LOX silencing did not impair the stratification process nor the formation of the first differentiated layers. However, terminal differentiation was strongly impaired, as shown by a decreased expression of late differentiation proteins and by the absence of stratum corneum. Nonetheless, inhibition of LOX enzymatic activity by ß-aminopropionitrile did not affect the differentiation process. Therefore, LOX protein acts during the first steps of KC differentiation and is important for subsequent commitment into terminal differentiation. Taken together, these results suggest that a finely regulated expression of LOX is necessary for normal KC differentiation and thus for maintenance of epidermal homeostasis.


Subject(s)
Cell Differentiation/physiology , Epidermal Cells , Keratinocytes/cytology , Protein-Lysine 6-Oxidase/metabolism , RNA Interference , Aminopropionitrile/pharmacology , Cell Differentiation/drug effects , Cell Line, Transformed , Cell Proliferation , Cell Survival/genetics , Cells, Cultured , Coculture Techniques , Enzyme Inhibitors/pharmacology , Epidermis/metabolism , Fibroblasts/cytology , Filaggrin Proteins , Gene Expression/genetics , Humans , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Keratin-10/genetics , Keratin-10/metabolism , Keratinocytes/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Precursors/genetics , Protein Precursors/metabolism , Protein-Lysine 6-Oxidase/antagonists & inhibitors , Protein-Lysine 6-Oxidase/genetics , Transglutaminases/genetics , Transglutaminases/metabolism , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...