Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32645408

ABSTRACT

Plants have evolved various acclimation responses to cope with phosphate depletion, including several changes in lipid metabolism. Thereby membrane phospholipids are dephosphorylated and can be used as an internal phosphate source, while galactolipids are incorporated into the membrane to maintain membrane functionality. Still little is known about the lipidomic and transcriptomic response of plants other than Arabidopsis thaliana upon phosphate starvation. Therefore, we employed lipidomics and transcriptomics to characterize the phosphate starvation response of lipid metabolism in tomato leaves and roots. Overall, phospholipid levels decreased and galactolipids increased during the acclimation response. In addition, an early increase of triacylglycerol was observed. Interestingly, there were major differences in the acclimation response of tomato leaves and roots: leaves mainly accumulated polyunsaturated triacylglycerol, while roots showed a massive increase in galactolipid content. In line with these results, we observed transcriptional induction of phospholipid degradation and galactolipid synthesis pathways in both analyzed tissues. In contrast, other aspects of the transcriptional response, in particular, the induction of phospholipid degradation, ER-localized fatty acid desaturation and triacylglycerol assembly differed between tomato leaves and roots. These results suggest a different modulation of degraded phospholipids toward triacylglycerols and galactolipids in phosphate-starved tomato leaves and roots. Possibly the availability and composition of acyl-CoA pools and ER-derived precursors trigger the synthesis of triacylglycerols or galactolipids. As the mechanism of triacylglycerol accumulation is poorly characterized outside of seed oil formation, these findings enhance our understanding of the phosphate starvation response and of how storage lipids accumulate under stress in vegetative tissue.


Subject(s)
Lipid Metabolism , Phosphates/deficiency , Plant Leaves/metabolism , Plant Roots/metabolism , Solanum lycopersicum/metabolism , Endoplasmic Reticulum/metabolism , Stress, Physiological
2.
Biochem J ; 477(13): 2543-2559, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32556082

ABSTRACT

Algae have evolved several mechanisms to adjust to changing environmental conditions. To separate from their surroundings, algal cell membranes form a hydrophobic barrier that is critical for life. Thus, it is important to maintain or adjust the physical and biochemical properties of cell membranes which are exposed to environmental factors. Especially glycerolipids of thylakoid membranes, the site of photosynthesis and photoprotection within chloroplasts, are affected by different light conditions. Since little is known about membrane lipid remodeling upon different light treatments, we examined light induced alterations in the glycerolipid composition of the two Chlorella species, C. vulgaris and C. sorokiniana, which differ strongly in their ability to cope with different light intensities. Lipidomic analysis and isotopic labeling experiments revealed differences in the composition of their galactolipid species, although both species likely utilize galactolipid precursors originated from the endoplasmic reticulum. However, in silico research of de novo sequenced genomes and ortholog mapping of proteins putatively involved in lipid metabolism showed largely conserved lipid biosynthesis pathways suggesting species specific lipid remodeling mechanisms, which possibly have an impact on the response to different light conditions.


Subject(s)
Light , Membrane Lipids/metabolism , Chlorella/radiation effects , Lipid Metabolism/radiation effects , Oxygen/metabolism , Phylogeny , RNA, Ribosomal, 18S/genetics
3.
PLoS One ; 14(4): e0216093, 2019.
Article in English | MEDLINE | ID: mdl-31034529

ABSTRACT

Microalgae are an ubiquitous and powerful driver of geochemical cycles which have formed Earth's biosphere since early in the evolution. Lately, microalgal research has been strongly stimulated by economic potential expected in biofuels, wastewater treatment, and high-value products. Similar to bacteria and other microorganisms, most work so far has been performed on the level of suspensions which typically contain millions of algal cells per millilitre. The thus obtained macroscopic parameters average cells, which may be in various phases of their cell cycle or even, in the case of microbial consortia, cells of different species. This averaging may obscure essential features which may be needed for the correct understanding and interpretation of investigated processes. In contrast to these conventional macroscopic cultivation and measuring tools, microfluidic single-cell cultivation systems represent an excellent alternative to study individual cells or a small number of mutually interacting cells in a well-defined environment. A novel microfluidic photobioreactor was developed and successfully tested by the photoautotrophic cultivation of Chlorella sorokiniana. The reported microbioreactor facilitates automated long-term cultivation of algae with controlled temperature and with an illumination adjustable over a wide range of photon flux densities. Chemical composition of the medium in the microbioreactor can be stabilised or modulated rapidly to study the response of individual cells. Furthermore, the algae are cultivated in one focal plane and separate chambers, enabling single-cell level investigation of over 100 microcolonies in parallel. The developed platform can be used for systematic growth studies, medium screening, species interaction studies, and the thorough investigation of light-dependent growth kinetics.


Subject(s)
Cell Culture Techniques/instrumentation , Microalgae/cytology , Microfluidics/instrumentation , Photobioreactors , Cell Aggregation , Cell Death/radiation effects , Light , Microalgae/growth & development , Microalgae/radiation effects
4.
Plant Cell ; 29(10): 2336-2348, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29025960

ABSTRACT

Updates in nanopore technology have made it possible to obtain gigabases of sequence data. Prior to this, nanopore sequencing technology was mainly used to analyze microbial samples. Here, we describe the generation of a comprehensive nanopore sequencing data set with a median read length of 11,979 bp for a self-compatible accession of the wild tomato species Solanum pennellii We describe the assembly of its genome to a contig N50 of 2.5 MB. The assembly pipeline comprised initial read correction with Canu and assembly with SMARTdenovo. The resulting raw nanopore-based de novo genome is structurally highly similar to that of the reference S. pennellii LA716 accession but has a high error rate and was rich in homopolymer deletions. After polishing the assembly with Illumina reads, we obtained an error rate of <0.02% when assessed versus the same Illumina data. We obtained a gene completeness of 96.53%, slightly surpassing that of the reference S. pennellii Taken together, our data indicate that such long read sequencing data can be used to affordably sequence and assemble gigabase-sized plant genomes.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Nanopores , Solanum/genetics , Sequence Analysis, DNA
5.
Bioresour Technol ; 234: 140-149, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28319762

ABSTRACT

Growth of Chlorella vulgaris was characterized as a function of irradiance in a laboratory turbidostat (1L) and compared to batch growth in sunlit modules (5-25L) of the commercial NOVAgreen photobioreactor. The effects of variable sunlight and culture density were deconvoluted by a mathematical model. The analysis showed that algal growth was light-limited due to shading by external construction elements and due to light attenuation within the algal bags. The model was also used to predict maximum biomass productivity. The manipulative experiments and the model predictions were confronted with data from a production season of three large-scale photobioreactors: NOVAgreen (<36,000L), IGV (2,500-3,500L), and Phytolutions (28,000L). The analysis confirmed light-limitation in all three photobioreactors. An additional limitation of the biomass productivity was caused by the nitrogen starvation that was used to induce lipid accumulation. Reduction of shading and separation of biomass and lipid production are proposed for future optimization.


Subject(s)
Biomass , Photobioreactors , Chlorella vulgaris , Climate , Microalgae
6.
J Biol Chem ; 289(5): 2675-86, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24337576

ABSTRACT

Plastoquinone is a redox active lipid that serves as electron transporter in the bifunctional photosynthetic-respiratory transport chain of cyanobacteria. To examine the role of genes potentially involved in cyanobacterial plastoquinone biosynthesis, we have focused on three Synechocystis sp. PCC 6803 genes likely encoding a chorismate pyruvate-lyase (sll1797) and two 4-hydroxy-3-solanesylbenzoate decarboxylases (slr1099 and sll0936). The functions of the encoded proteins were investigated by complementation experiments with Escherichia coli mutants, by the in vitro enzyme assays with the recombinant proteins, and by the development of Synechocystis sp. single-gene knock-out mutants. Our results demonstrate that sll1797 encodes a chorismate pyruvate-lyase. In the respective knock-out mutant, plastoquinone was hardly detectable, and the mutant required 4-hydroxybenzoate for growth underlining the importance of chorismate pyruvate-lyase to initiate plastoquinone biosynthesis in cyanobacteria. The recombinant Slr1099 protein displayed decarboxylase activity and catalyzed in vitro the decarboxylation of 4-hydroxy-3-prenylbenzoate with different prenyl side chain lengths. In contrast to Slr1099, the recombinant Sll0936 protein did not show decarboxylase activity regardless of the conditions used. Inactivation of the sll0936 gene in Synechocystis sp., however, caused a drastic reduction in the plastoquinone content to levels very similar to those determined in the slr1099 knock-out mutant. This proves that not only slr1099 but also sll0936 is required for plastoquinone synthesis in the cyanobacterium. In summary, our data demonstrate that cyanobacteria produce plastoquinone exclusively via a pathway that is in the first reaction steps almost identical to ubiquinone biosynthesis in E. coli with conversion of chorismate to 4-hydroxybenzoate, which is then prenylated and decarboxylated.


Subject(s)
Carboxy-Lyases/metabolism , Oxo-Acid-Lyases/metabolism , Plastoquinone/metabolism , Synechocystis/enzymology , Carboxy-Lyases/genetics , Chorismic Acid/chemistry , Chorismic Acid/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Evolution, Molecular , Oxo-Acid-Lyases/genetics , Parabens/chemistry , Parabens/metabolism , Photosynthesis/genetics , Phylogeny , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Synechocystis/genetics , Synechocystis/growth & development , Ubiquinone/metabolism
7.
Biochem J ; 442(3): 621-9, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22166075

ABSTRACT

PQ-9 (plastoquinone-9) has a central role in energy transformation processes in cyanobacteria by mediating electron transfer in both the photosynthetic as well as the respiratory electron transport chain. The present study provides evidence that the PQ-9 biosynthetic pathway in cyanobacteria differs substantially from that in plants. We identified 4-hydroxybenzoate as being the aromatic precursor for PQ-9 in Synechocystis sp. PCC6803, and in the present paper we report on the role of the membrane-bound 4-hydroxybenzoate solanesyltransferase, Slr0926, in PQ-9 biosynthesis and on the properties of the enzyme. The catalytic activity of Slr0926 was demonstrated by in vivo labelling experiments in Synechocystis sp., complementation studies in an Escherichia coli mutant with a defect in ubiquinone biosynthesis, and in vitro assays using the recombinant as well as the native enzyme. Although Slr0926 was highly specific for the prenyl acceptor substrate 4-hydroxybenzoate, it displayed a broad specificity with regard to the prenyl donor substrate and used not only solanesyl diphosphate, but also a number of shorter-chain prenyl diphosphates. In combination with in silico data, our results indicate that Slr0926 evolved from bacterial 4-hydroxybenzoate prenyltransferases catalysing prenylation in the course of ubiquinone biosynthesis.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Parabens/metabolism , Plastoquinone/metabolism , Synechocystis/enzymology , Alkyl and Aryl Transferases/chemistry , Catalysis , Cyanobacteria/enzymology , Cyanobacteria/metabolism , Genome, Bacterial , Synechocystis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...