Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Stud Mycol ; 103: 59-85, 2022 Sep.
Article in English | MEDLINE | ID: mdl-37342153

ABSTRACT

In a recently published classification scheme for Leotiomycetes, the new family Hyphodiscaceae was erected; unfortunately, this study was rife with phylogenetic misinterpretations and hampered by a poor understanding of this group of fungi. This manifested in the form of an undiagnostic familial description, an erroneous familial circumscription, and the redescription of the type species of an included genus as a new species in a different genus. The present work corrects these errors by incorporating new molecular data from this group into phylogenetic analyses and examining the morphological features of the included taxa. An emended description of Hyphodiscaceae is provided, notes and descriptions of the included genera are supplied, and keys to genera and species in Hyphodiscaceae are supplied. Microscypha cajaniensis is combined in Hyphodiscus, and Scolecolachnum nigricans is a taxonomic synonym of Fuscolachnum pteridis. Future work in this family should focus on increasing phylogenetic sampling outside of Eurasia and better characterising described species to help resolve outstanding issues. Citation: Quijada L, Baral HO, Johnston PR, Pärtel K, Mitchell JK, Hosoya T, Madrid H, Kosonen T, Helleman S, Rubio E, Stöckli E, Huhtinen S, Pfister DH (2022). A review of Hyphodiscaceae. Studies in Mycology 103: 59-85. doi: 10.3114/sim.2022.103.03.

2.
Fungal Syst Evol ; 10: 231-249, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36741556

ABSTRACT

Species of the genus Phaeohelotium (Leotiomycetes: Helotiaceae) are cup fungi that grow on decaying wood, leaves, litter, and directly on soil. Northern Hemisphere species are primarily found on litter and wood, whereas in the Southern Hemisphere the genus includes a mix of saprotrophs as well as taxa that grow on soil in association with ectomycorrhizal trees. The diversity of this genus has not been fully explored in southern South America. Here we describe two species from Chile, Phaeohelotium maiusaurantium sp. nov. and Ph. pallidum sp. nov., found on soil in Patagonian Nothofagaceae-dominated forests. We present macro- and micromorphological descriptions, illustrations, and molecular phylogenetic analyses. The two new species are placed in Phaeohelotium with high support in our 15-locus phylogeny as well as phylogenetic reconstructions based on the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene. Our ITS phylogeny places both Ph. maiusaurantium and Ph. pallidum in a well-supported subclade that includes ectomycorrhizal root tip samples from Australasia. Similar species can be separated from these new taxa based on morphological characteristics, biogeography, substrate, and sequence data. In addition, two unnamed species from Chilean Nothofagaceae forests (Phaeohelotium sp. 1 and Phaeohelotium sp. 2) are documented from scant collections and sequence data and await description until more material becomes available. Citation: Grupe II AC, Smith ME, Weier A, Healy R, Caiafa MV, Pfister DH, Haelewaters D, Quandt CA (2022). Two new species of Phaeohelotium (Leotiomycetes: Helotiaceae) from Chile and their putative ectomycorrhizal status. Fungal Systematics and Evolution 10: 231-249. doi: 10.3114/fuse.2022.10.10.

3.
Fungal Syst Evol ; 8: 129-142, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35005577

ABSTRACT

Hymenobolus agaves has been reported only in Europe and Africa on the American plant Agave americana (Asparagaceae). This fungus has never been found in the native range of its host, in arid ecosystems of northern and central Mexico and Texas, USA. It has been suggested to be a pathogen that can kill its host. The fungus grows on succulent leaf bases of the plant. The morphology - black apothecia with a hymenium that disintegrates when asci mature and dark ornamented ascospores - make this species very distinctive, but it has been collected and reported only a few times since its first description. Its systematic position has been unclear, and it has been treated as incertae sedis, that is of uncertain placement, in Leotiomycetes. With recent collections and additional data on the ecology of H. agaves, we use integrative taxonomy (DNA sequences, morphology, ecology) to show its relationships is with Cenangiaceae.

4.
Persoonia ; 44: 98-112, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33116337

ABSTRACT

Molecular phylogenetic analyses have addressed the systematic position of several major Northern Hemisphere lineages of Pezizales but the taxa of the Southern Hemisphere remain understudied. This study focuses on the molecular systematics and taxonomy of Southern Hemisphere species currently treated in the genera Underwoodia and Gymnohydnotrya. Species in these genera have been identified as the monophyletic /gymnohydnotrya lineage, but no further research has been conducted to determine the evolutionary origin of this lineage or its relationship with other Pezizales lineages. Here, we present a phylogenetic study of fungal species previously described in Underwoodia and Gymnohydnotrya, with sampling of all but one described species. We revise the taxonomy of this lineage and describe three new species from the Patagonian region of South America. Our results show that none of these Southern Hemisphere species are closely related to Underwoodia columnaris, the type species of the genus Underwoodia. Accordingly, we recognize the genus Geomorium described by Spegazzini in 1922 for G. fuegianum. We propose the new family, Geomoriaceae fam. nov., to accommodate this phylogenetically and morphologically unique Southern Hemisphere lineage. Molecular dating estimated that Geomoriaceae started to diverge from its sister clade Tuberaceae c. 112 MYA, with a crown age for the family in the late Cretaceous (c. 67 MYA). This scenario fits well with a Gondwanan origin of the family before the split of Australia and South America from Antarctica during the Paleocene-Eocene boundary (c. 50 MYA).

5.
Fungal Syst Evol ; 5: 99-111, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32467916

ABSTRACT

Micraspis acicola was described more than 50 years ago to accommodate a phacidium-like fungus that caused a foliar disease of Picea mariana. After its publication, two more species were added, M. strobilina and M. tetraspora, all of them growing on Pinaceae in the Northern Hemisphere, but each species occupying a unique type of host tissue (needles, cones or wood). Micraspis is considered to be a member of class Leotiomycetes, but was originally placed in Phacidiaceae (Phacidiales), later transferred to Helotiaceae (Helotiales) and recently returned to Phacidiales but in a different family (Tympanidaceae). The genus remains poorly sampled, and hence poorly understood both taxonomically and ecologically. Here, we use morphology, cultures and sequences to provide insights into its systematic position in Leotiomycetes and its ecology. Our results show that the genus should not be included in Tympanidaceae or Phacidiaceae, and support the erection of a new family and order with a unique combination of morphological features supported by molecular data.

6.
Fungal Syst Evol ; 5: 131-138, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32467919

ABSTRACT

Geodina salmonicolor is shown to be a synonym of G. guanacastensis, the type and only species of the genus. Comparisons of ITS rDNA sequences of a paratype and two recent collections of G. guanacastensis with published ITS sequences of G. salmonicolor, from the Dominican Republic, show that these are nearly identical. When G. salmonicolor was erected no sequences of the type species were available. Morphological comparisons supports the conspecificity. Details regarding the description of G. salmonicolor are pointed out. A four-gene phylogeny places Geodina and Wynnea as a supported sister group to the rest of the Sarcoscyphaceae. Species in these genera share morphological traits of cyanophobic spore markings, dark angular outer excipular cells that give rise to hairs and the origin of several apothecia from a common basal stalk. Their occurrence on soil rather than on wood or plant material distinguish them from other Sarcoscyphaceae. Based on morphology, phylogenic relationships and trophic interactions we erect a new family, Wynneaceae, for Geodina and Wynnea.

7.
Fungal Syst Evol ; 3: 19-33, 2019 Jun.
Article in English | MEDLINE | ID: mdl-32467897

ABSTRACT

In this paper, new species and formae of the genus Gloeandromyces (Ascomycota, Laboulbeniales) are described and illustrated. These are: Gloeandromyces dickii sp. nov. on Trichobius joblingi from Nicaragua and Panama; G. pageanus f. alarum f. nov. on Tri. joblingi from Panama; G. pageanus f. polymorphus f. nov. on Tri. dugesioides and Tri. joblingi from Panama and Trinidad; and G. streblae f. sigmomorphus f. nov. on Tri. joblingi from Panama. Gloeandromyces pageanus on Tri. dugesioides from Panama as described in Nova Hedwigia 105 (2017) is referred to as G. pageanus f. pageanus. Support for these descriptions of species and formae comes from phylogenetic reconstruction of the large subunit ribosomal DNA and from the application of species delimitation methods (ABGD, bPTP, GMYC). Host specialization results in phylogenetic segregation by host species in both G. pageanus and G. streblae and this may represent a case of incipient speciation. A second mechanism driving diversity involves position-induced morphological adaptations, leading to the peculiar morphotypes that are associated to growing on a particular position of the integument (G. pageanus f. alarum, G. streblae f. sigmomorphus).

8.
Fungal Syst Evol ; 4: 1-12, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32467902

ABSTRACT

Species of the genus Wynnea are collected in association with a subterranean mass generally referred to as a sclerotium. This is one of the few genera of the Sarcoscyphaceae not associated with plant material - wood or leaves. The sclerotium is composed of hyphae of both Armillaria species and Wynnea species. To verify the existence of Armillaria species in the sclerotia of those Wynnea species not previously examined and to fully understand the structure and nature of the sclerotium, molecular data and morphological characters were analyzed. Using nuclear ITS rDNA sequences the Armillaria species co-occurring with Wynnea species were identified from all examined material. These Armillaria symbionts fall into two main Armillaria groups - the A. gallica-nabsnona-calvescens group and the A. mellea group. Divergent time estimates of the Armillaria and Wynnea lineages support a co-evolutionary relationship between these two fungi.

9.
Mol Ecol ; 22(6): 1717-32, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23205556

ABSTRACT

Fungal mitospores may function as dispersal units and/ or spermatia and thus play a role in distribution and/or mating of species that produce them. Mitospore production in ectomycorrhizal (EcM) Pezizales is rarely reported, but here we document mitospore production by a high diversity of EcM Pezizales on three continents, in both hemispheres. We sequenced the internal transcribed spacer (ITS) and partial large subunit (LSU) nuclear rDNA from 292 spore mats (visible mitospore clumps) collected in Argentina, Chile, China, Mexico and the USA between 2009 and 2012. We collated spore mat ITS sequences with 105 fruit body and 47 EcM root sequences to generate operational taxonomic units (OTUs). Phylogenetic inferences were made through analyses of both molecular data sets. A total of 48 OTUs from spore mats represented six independent EcM Pezizales lineages and included truffles and cup fungi. Three clades of seven OTUs have no known meiospore stage. Mitospores failed to germinate on sterile media, or form ectomycorrhizas on Quercus, Pinus and Populus seedlings, consistent with a hypothesized role of spermatia. The broad geographic range, high frequency and phylogenetic diversity of spore mats produced by EcM Pezizales suggests that a mitospore stage is important for many species in this group in terms of mating, reproduction and/or dispersal.


Subject(s)
Ascomycota/classification , Mycorrhizae/classification , Phylogeny , Ascomycota/genetics , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Likelihood Functions , Molecular Sequence Data , Mycorrhizae/genetics , Pinus/microbiology , Plant Roots/microbiology , Populus/microbiology , Quercus/microbiology , Sequence Analysis, DNA , Spores, Fungal/classification , Spores, Fungal/genetics
10.
Mycologia ; 98(4): 535-40, 2006.
Article in English | MEDLINE | ID: mdl-17139846

ABSTRACT

Plant species in the subfamily Monotropoideae are mycoheterotrophs; they obtain fixed carbon from photosynthetic plants via a shared mycorrhizal network. Previous findings show mycoheterotrophic plants exhibit a high level of specificity to their mycorrhizal fungi. In this study we explore the association of mycorrhizal fungi and Monotropa uniflora (Monotropoideae: Ericaceae) in eastern North America. We collected M. uniflora roots and nearby basidiomycete sporocarps from four sites within a 100 km2 area in eastern Massachusetts. We analyzed DNA sequences of the internal transcribed spacer region (ITS) from the fungal nuclear ribosomal gene to assess the genetic diversity of fungi associating with M. uniflora roots. In this analysis we included 20 ITS sequences from Russula sporocarps collected nearby, 44 sequences of Russula or Lactarius species from GenBank and 12 GenBank sequences of fungi isolated from M. uniflora roots in previous studies. We found that all 56 sampled M. uniflora mycorrhizal fungi were members of the Russulaceae, confirming previous research. The analysis showed that most of the diversity of mycorrhizal fungi spreads across the genus Russula. ITS sequences of the mycorrhizal fungi consisted of 20 different phylotypes: 18 of the genus Russula and two of Lactarius, based on GenBank searches. Of the sampled plants, 57% associated with only three of the 20 mycorrhizal fungi detected in roots, and of the 25 sporocarp phylotypes collected three, were associated with M. uniflora. Furthermore the results indicate that the number of different fungal phylotypes associating with M. uniflora of eastern North America is higher than that of western North America but patterns of fungal species abundance might be similar between mycorrhizae from the two locations.


Subject(s)
Agaricales/physiology , Ericaceae/microbiology , Mycorrhizae/physiology , Agaricales/classification , Agaricales/genetics , Agaricales/isolation & purification , DNA, Ribosomal Spacer/genetics , Ecosystem , Ericaceae/physiology , Massachusetts , Mycorrhizae/classification , Mycorrhizae/genetics , Mycorrhizae/isolation & purification , Symbiosis , Trees
11.
Mycologia ; 98(6): 1029-40, 2006.
Article in English | MEDLINE | ID: mdl-17486978

ABSTRACT

The Pezizomycetes (order Pezizales) is an early diverging lineage within the Pezizomycotina. A shared derived character, the operculate ascus, supports the Pezizales as monophyletic, although functional opercula have been lost in certain taxa. Phylogenetic relationships within Pezizales were studied using parsimony and Bayesian analyses of partial SSU and LSU rDNA sequences from 100 taxa representing 82 genera and 13 of the 15 families currently recognized. Three primary lineages are identified that more or less correspond to the A, B and C lineages resolved in previous analyses using SSU rDNA: (A) Ascobolaceae and Pezizaceae; (B) Discinaceae-Morchellaceae and Helvellaceae-Tuberaceae; (C) Ascodesmidaceae, Glaziellaceae, Pyronemataceae, Sarcoscyphaceae and Sarcosomataceae. In contrast the monotypic Rhizinaceae and Caloscyphaceae are resolved as two independent lineages. Bayesian analyses support a relationship among Rhizina and two species of Psilopezia (Pyronemataceae). Only lineage C is highly supported. The B and C lineages form a strongly supported monophyletic group. None of these lineages corresponds to earlier proposed suborders. The A and B lineages are supported by certain morphological features (e.g. ascus bluing reaction in iodine, cytology of spores and paraphyses, septal pore structures and excipulum structure); these characters have been subject to homoplasy. Lineage C is the largest and most heterogeneous, and no unifying morphological features support its recognition. The Pyronemataceae, in which almost half of the species in the order are found, is not monophyletic because the Ascodesmidaceae and Glaziellaceae are nested within it. The relationships among all families in the C lineage remain uncertain. The origin of various forms of ascomata, including hypogeous forms (truffles and truffle-like), epigeous cleistothecia, simple reduced apothecia and highly elaborate, stipitate forms (helvelloid and morchelloid), are discussed.


Subject(s)
Ascomycota/classification , Ascomycota/genetics , Phylogeny , Ascomycota/cytology , Cluster Analysis , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Molecular Sequence Data , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Sequence Analysis, DNA , Sequence Homology
12.
Mycologia ; 97(5): 1023-33, 2005.
Article in English | MEDLINE | ID: mdl-16596954

ABSTRACT

Parsimony, maximum-likelihood and Bayesian analyses of SSU rDNA sequences of representative taxa of Pezizomycetes, Eurotiomycetes, Dothideomycetes, Leotiomycetes and Sordariomycetes, all strongly support the cleistothecial fungi Orbicula parietina and Lasiobolidium orbiculoides to be of pezizalean origin. Previous hypotheses of close affinities with cleistothecial or highly reduced fungi now placed in the Thelebolales, Eurotiales or Onygenales are rejected. Orbicula parietina and L. orbiculoides are deeply nested within Pyronemataceae (which subsumes the families Ascodesmidaceae, Glaziellaceae and Otideaceae). LSU rDNA sequences suggest that Orbicula is nested within the apothecia-forming genus Pseudombrophila (including Nannfeldtiella and Fimaria) and that L. orbiculoides is closely related. Ascodesmis and Lasiobolus, which have been suggested as closely related to Orbicula and Lasiobolidium, are identified as a sister lineage to the Pseudombrophila lineage. Cleistothecial forms that have lost the ascus operculum and ability to discharge spores actively have evolved at least once in the Pseudombrophila lineage. Some species of Pseudombrophila produce subglobular ascomata initials that are closed early in development and open only in the mid-mesohymenial phase. We hypothesize that, in the Pseudombrophila lineage, ascomata forms that never open are derived from ascomata that open late in development. The placement of O. parietina and L. orbiculoides within Pseudombrophila is supported by morphological characters, ecology and temperature optima for fruiting.


Subject(s)
Ascomycota/classification , Ascomycota/genetics , Evolution, Molecular , Phylogeny , Ascomycota/physiology , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL