Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Insects ; 15(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786909

ABSTRACT

This article presents the current state of knowledge of mosquito species (Diptera: Culicidae) occurring in Poland. In comparison to the most recently published checklists (1999 and 2007), which listed 47 mosquito species, four species (Aedes japonicus, Anopheles daciae, Anopheles hyrcanus, and Anopheles petragnani) are added to the Polish fauna. Our new checklist of Polish mosquito fauna includes 51 species of mosquitoes from five genera: Aedes (30), Anopheles (8), Coquillettidia (1), Culiseta (7), and Culex (5). Aspects of the ecology and biology of the Polish mosquito fauna, with particular emphasis on newly recorded species, are discussed.

2.
Parasit Vectors ; 16(1): 418, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968721

ABSTRACT

BACKGROUND: Aedes japonicus japonicus (Theobald, 1901) and Aedes koreicus (Edwards, 1917) have rapidly spread in Europe over the last decades. Both species are very closely related and occur in sympatry. Females and males are difficult to distinguish. However, the accurate species discrimination is important as both species may differ in their vectorial capacity and spreading behaviour. In this study, we assessed the potential of geometric wing morphometrics as alternative to distinguish the two species. METHODS: A total of 147 Ae. j. japonicus specimens (77 females and 70 males) and 124 Ae. koreicus specimens (67 females and 57 males) were collected in southwest Germany. The left wing of each specimen was removed, mounted and photographed. The coordinates of 18 landmarks on the vein crosses were digitalised by a single observer. The resulting two-dimensional dataset was used to analyse the differences in the wing size (i.e. centroid size) and wing shape between Ae. j. japonicus and Ae. koreicus using geometric morphometrics. To analyse the reproducibility of the analysis, the landmark collection was repeated for 20 specimens per sex and species by two additional observers. RESULTS: The wing size in female Ae. koreicus was significantly greater than in Ae. j. japonicus but did not differ significantly for males. However, the strong overlap in wing size also for the females would not allow to discriminate the two species. In contrast, the wing shape clustering was species specific and a leave-one-out validation resulted in a reclassification accuracy of 96.5% for the females and 91.3% for the males. The data collected by different observers resulted in a similar accuracy, indicating a low observer bias for the landmark collection. CONCLUSIONS: Geometric wing morphometrics provide a reliable and robust tool to distinguish female and male specimens of Ae. j. japonicus and Ae. koreicus.


Subject(s)
Aedes , Male , Female , Animals , Reproducibility of Results , Europe , Germany , Species Specificity , Introduced Species
3.
Viruses ; 14(12)2022 11 26.
Article in English | MEDLINE | ID: mdl-36560650

ABSTRACT

Transmission of arthropod-borne viruses (arboviruses) are an emerging global health threat in the last few decades. One important arbovirus family is the Togaviridae, including the species Sindbis virus within the genus Alphavirus. Sindbis virus (SINV) is transmitted by mosquitoes, but available data about the role of different mosquito species as potent vectors for SINV are scarce. Therefore, we investigated seven mosquito species, collected from the field in Germany (Ae. koreicus, Ae. geniculatus, Ae. sticticus, Cx. torrentium, Cx. pipiens biotype pipiens) as well as lab strains (Ae. albopictus, Cx. pipiens biotype molestus, Cx. quinquefasciatus), for their vector competence for SINV. Analysis was performed via salivation assay and saliva was titrated to calculate the amount of infectious virus particles per saliva sample. All Culex and Aedes species were able to transmit SINV. Transmission could be detected at all four investigated temperature profiles (of 18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C or 27 ± 5 °C), and no temperature dependency could be observed. The concentration of infectious virus particles per saliva sample was in the same range for all species, which may suggest that all investigated mosquito species are able to transmit SINV in Germany.


Subject(s)
Aedes , Culex , Animals , Sindbis Virus , Mosquito Vectors , Germany
4.
PLoS One ; 17(8): e0269880, 2022.
Article in English | MEDLINE | ID: mdl-35913994

ABSTRACT

BACKGROUND: The mosquito Aedes koreicus (Edwards, 1917) is a recent invader on the European continent that was introduced to several new places since its first detection in 2008. Compared to other exotic Aedes mosquitoes with public health significance that invaded Europe during the last decades, this species' biology, behavior, and dispersal patterns were poorly investigated to date. METHODOLOGY/PRINCIPAL FINDINGS: To understand the species' population relationships and dispersal patterns within Europe, a fragment of the cytochrome oxidase I (COI or COX1) gene was sequenced from 130 mosquitoes, collected from five countries where the species has been introduced and/or established. Oxford Nanopore and Illumina sequencing techniques were combined to generate the first complete nuclear and mitochondrial genomic sequences of Ae. koreicus from the European region. The complete genome of Ae. koreicus is 879 Mb. COI haplotype analyses identified five major groups (altogether 31 different haplotypes) and revealed a large-scale dispersal pattern between European Ae. koreicus populations. Continuous admixture of populations from Belgium, Italy, and Hungary was highlighted, additionally, haplotype diversity and clustering indicate a separation of German sequences from other populations, pointing to an independent introduction of Ae. koreicus to Europe. Finally, a genetic expansion signal was identified, suggesting the species might be present in more locations than currently detected. CONCLUSIONS/SIGNIFICANCE: Our results highlight the importance of genetic research of invasive mosquitoes to understand general dispersal patterns, reveal main dispersal routes and form the baseline of future mitigation actions. The first complete genomic sequence also provides a significant leap in the general understanding of this species, opening the possibility for future genome-related studies, such as the detection of 'Single Nucleotide Polymorphism' markers. Considering its public health importance, it is crucial to further investigate the species' population genetic dynamic, including a larger sampling and additional genomic markers.


Subject(s)
Aedes , Aedes/genetics , Animals , Disease Vectors , Europe , Genetic Variation , Introduced Species , Mosquito Vectors/genetics
5.
Parasitol Res ; 121(2): 765-768, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35032218

ABSTRACT

Aedes pulcritarsis is a tree-hole breeding species with its main distribution in the Mediterranean area. Within the scope of two independent monitoring programmes, this mosquito species was detected for the first time in Austria, in the province of Lower Austria (2018, districts Mistelbach and Gaenserndorf; 2020, district Bruck an der Leitha). As the climatic and habitat situation in Central Europe seems to be generally suitable for this species, the most likely explanation for the species not being recorded previously is that it might have been overlooked in the past due to its specialized breeding habitat. However, further research on the distribution of Ae. pulcritarsis in Austria would be needed to support this hypothesis. The results from this study will contribute to the investigation of the northern distribution limit of Ae. pulcritarsis in Europe and possible changes thereof.


Subject(s)
Aedes , Culicidae , Ochlerotatus , Animals , Austria , Ecosystem , Europe
6.
Viruses ; 13(12)2021 12 14.
Article in English | MEDLINE | ID: mdl-34960776

ABSTRACT

The global spread of invasive mosquito species increases arbovirus infections. In addition to the invasive species Aedes albopictus and Aedes japonicus, Aedes koreicus has spread within Central Europe. Extensive information on its vector competence is missing. Ae. koreicus from Germany were investigated for their vector competence for chikungunya virus (CHIKV), Zika virus (ZIKV) and West Nile virus (WNV). Experiments were performed under different climate conditions (27 ± 5 °C; 24 ± 5 °C) for fourteen days. Ae. koreicus had the potential to transmit CHIKV and ZIKV but not WNV. Transmission was exclusively observed at the higher temperature, and transmission efficiency was rather low, at 4.6% (CHIKV) or 4.7% (ZIKV). Using a whole virome analysis, a novel mosquito-associated virus, designated Wiesbaden virus (WBDV), was identified in Ae. koreicus. Linking the WBDV infection status of single specimens to their transmission capability for the arboviruses revealed no influence on ZIKV transmission. In contrast, a coinfection of WBDV and CHIKV likely has a boost effect on CHIKV transmission. Due to its current distribution, the risk of arbovirus transmission by Ae. koreicus in Europe is rather low but might gain importance, especially in regions with higher temperatures. The impact of WBDV on arbovirus transmission should be analyzed in more detail.


Subject(s)
Aedes/virology , Arbovirus Infections/transmission , Mosquito Vectors/virology , Viral Interference , Animals , Chikungunya Fever/transmission , Zika Virus Infection/transmission
7.
Parasit Vectors ; 12(1): 354, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31311590

ABSTRACT

BACKGROUND: The analysis of large mosquito samples is expensive and time-consuming, delaying the efficient timing of vector control measurements. Processing a fraction of a sample using a subsampling method can significantly reduce the processing effort. However, a comprehensive evaluation of the reliability of different subsampling methods is missing. METHODS: A total of 23 large mosquito samples (397-4713 specimens per sample) were compared in order to evaluate five subsampling methods for the estimation of the number of specimens and species: area, volume, weight, selection of 200 random specimens and analyses with an image processing software. Each sample was distributed over a grid paper (21.0 × 29.7 cm; 25 grid cells of 4.2 × 5.9 cm) with 200 randomly distributed points. After taking pictures, mosquito specimens closest to each of the 200 points on the paper were selected. All mosquitoes per grid cell were identified by morphology and transferred to scaled tubes to estimate the volume. Finally, the fresh and dry weights were determined. RESULTS: The estimated number of specimens and species did not differ between the area-, volume- and weight-based method. Subsampling 20% of the sample gave an error rate of approximately 12% for the number of specimens, 6% for the proportion of the most abundant species and between 6-40% for the number of species per sample. The error for the estimated number of specimens using the picture processing software ImageJ gave a similar error rate when analyzing 15-20% of the total sample. By using 200 randomly selected specimens it was possible to give a precise estimation of the proportion of the most abundant species (r = 0.97, P < 0.001), but the number of species per sample was underestimated by 28% on average. Selecting adjacent grid cells instead of sampling randomly chosen grid cells and using dry weight instead of wet weight did not increase the accuracy of estimates. CONCLUSIONS: Different subsampling methods have various advantages and disadvantages. However, the area-based analysis of 20% of the sample is probably the most suitable approach for most kinds of mosquito studies, giving sufficiently precise estimations of the number of specimens and species, which is slightly less laborious compared to the other methods tested.


Subject(s)
Culicidae , Sampling Studies , Animals , Mosquito Vectors , Reproducibility of Results , Statistics as Topic
8.
Parasit Vectors ; 11(1): 662, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30558660

ABSTRACT

BACKGROUND: The East Asian mosquito species Aedes koreicus was recorded out of its native range for the first time in Belgium in 2008. Since then, several other European populations or single individuals have been observed throughout Europe with reports from Italy, Switzerland, European Russia, Slovenia, Germany and Hungary. The Italian population seems to be the only one that is expanding rapidly, so the Swiss population very likely derives from it. RESULTS: In a surveillance program for invasive mosquito species, a single larva of Ae. koreicus was found in a cemetery vase in 2016 in the city of Wiesbaden, Germany. In the following year the finding was confirmed and an established population could be proven over an area of about 50 km2. The morphological identification of the first larva was confirmed by sequencing of a region within the nad4 sequence. A study of adult females showed that the morphological characteristics of this population are not identical to the populations from Belgium and Italy. The eggs and larvae were found together with Aedes j. japonicus in the same breeding sites and ovitraps, as well as with other indigenous mosquito species such as Culex pipiens/Culex torrentium, Aedes geniculatus and Anopheles plumbeus. CONCLUSIONS: Since the newly discovered population in Germany shows different morphological characteristics to the populations in Belgium and Italy, it seems to originate from an independent introduction. It remains unknown how the introduction took place. A further spread similar to the one in northern Italy can be assumed for the future due to similar climatic conditions.


Subject(s)
Aedes/anatomy & histology , Aedes/genetics , Aedes/physiology , Animal Distribution , Animals , Europe , Female , Germany , Larva/anatomy & histology , Larva/genetics , Larva/physiology , Male
9.
Parasitol Res ; 115(7): 2671-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27003404

ABSTRACT

The so far known species of the Anopheles Claviger Complex, Anopheles claviger s.s. and Anopheles petragnani, can only be distinguished by partial overlapping characteristics of immature stages and by nucleotide sequence variation of the genomic ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2) region. The known distribution of An. petragnani is so far restricted to the western Mediterranean region, whereas An. claviger s.s. occurs across most of Europe, up to the Middle East and North Africa. In our study, we investigated the larval mosquito fauna in rock pools of the Murg valley (Black Forest, Germany) once a month from April to December 2015.Among other species, larvae belonging to the Anopheles Claviger Complex were found. The fourth instar larvae were morphologically identified by chaetotaxy of the head and abdomen. The results were confirmed by a multiplex PCR and additional sequencing of the amplificates.Of the 1289 collected larvae from the rock pools, seven belonged to the Anopheles Claviger Complex. Five individuals were determined morphologically as An. petragnani and two as An. claviger s.s. The associated mosquito fauna comprised of Aedes japonicus japonicus (548 individuals), Culex pipiens s.l. and Culex torrentium (493 individuals) and Culex hortensis (241 individuals).This is the first record of An. petragnani north of the Alps. Further studies will reveal whether this is an isolated population of An. petragnani and if the investigated rock pool breeding sites represent typical habitats of this species in temperate regions in Central Europe.


Subject(s)
Anopheles/classification , Animals , Anopheles/genetics , Ecosystem , Genetic Variation , Germany , Larva , Male , Species Specificity
10.
J Am Mosq Control Assoc ; 31(2): 187-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26181697

ABSTRACT

The flood plains of the Upper Rhine Valley provide excellent conditions for the proliferation of mosquitoes as well as for the development of dragon and damselflies. It could be assumed that mosquitoes belong to the diet of the Odonata and that the latter could be harmed by the reduction of the mosquito population with the purpose of diminishing the massive nuisance for the people living there. A total of 41 adult dragonflies and damselflies were examined by immunoblot for remnants of mosquitoes in their guts. A rabbit antiserum against Aedes vexans proteins was used for the immunoblot. Only 3 Aeshna cyanea and 1 Platycnemis pennipes could be shown to have fed on mosquitoes. In specimens of the genus Sympetrum no mosquitoes were detected. It seems very doubtful that mosquitoes are an essential part of the Odonata diet.


Subject(s)
Culicidae/physiology , Odonata/physiology , Predatory Behavior/physiology , Animals , Diet , Immunoblotting , Insect Proteins/immunology , Odonata/classification
11.
Parasit Vectors ; 7: 268, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24924481

ABSTRACT

BACKGROUND: To monitor adult mosquitoes several trapping devices are available. These are differently constructed and use various mechanisms for mosquito attraction, thus resulting in different trapping sensitivities and efficacies for the various species. Mosquito monitoring and surveillance programs in Europe use various types of mosquito traps, but only a few comparisons have been conducted so far. This study compared the performance of four commercial trapping devices, which are commonly used in Europe. METHODS: Four different traps, Biogents Sentinel trap (BG trap), Heavy Duty Encephalitis Vector Survey trap (EVS trap), Centres for Disease Control miniature light trap (CDC trap) and Mosquito Magnet Patriot Mosquito trap (MM trap) were compared in a 4 × 4 latin square study. In the years 2012 and 2013, more than seventy 24-hour trap comparisons were conducted at ten different locations in northern and southern Germany, representing urban, forest and floodplain biotopes. RESULTS: Per 24-hour trapping period, the BG trap caught the widest range of mosquito species, the highest number of individuals of the genus Culex as well as the highest number of individuals of the species Ochlerotatus cantans, Aedes cinereus/geminus, Oc. communis and Culex pipiens/torrentium. The CDC trap revealed best performance for Aedes vexans, whereas the MM trap was most efficient for mosquitoes of the genus Anopheles and the species Oc. geniculatus. The EVS trap did not catch more individuals of any genus or species compared to the other three trapping devices. The BG trap caught the highest number of individuals per trapping period in urban environments as well as in wet forest, while the CDC trap caught the highest number of individuals in the floodplain biotopes. Additionally, the BG trap was most efficient for the number of mosquito species in urban locations. CONCLUSION: The BG trap showed a significantly better or similar performance compared to the CDC, EVS or MM trap with regard to trapping efficacy for most common mosquito species in Germany, including diversity of mosquito species and number of mosquitoes per trapping period. Thus, the BG trap is probably the best solution for general monitoring or surveillance programs of adult mosquitoes in Central Europe.


Subject(s)
Culicidae/classification , Culicidae/physiology , Animals , Environment , Germany , Mosquito Control/instrumentation , Population Density , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...