Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 295(45): 15342-15365, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32868295

ABSTRACT

The contraction and relaxation of the heart is controlled by stimulation of the ß1-adrenoreceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation is counteracted by the main cardiac protein phosphatases, PP2A and PP1. Both kinase and phosphatases are sensitive to intramolecular disulfide formation in their catalytic subunits that inhibits their activity. Additionally, intermolecular disulfide formation between PKA type I regulatory subunits (PKA-RI) has been described to enhance PKA's affinity for protein kinase A anchoring proteins, which alters its subcellular distribution. Nitroxyl donors have been shown to affect contractility and relaxation, but the mechanistic basis for this effect is unclear. The present study investigates the impact of several nitroxyl donors and the thiol-oxidizing agent diamide on cardiac myocyte protein phosphorylation and oxidation. Although all tested compounds equally induced intermolecular disulfide formation in PKA-RI, only 1-nitrosocyclohexalycetate (NCA) and diamide induced reproducible protein phosphorylation. Phosphorylation occurred independently of ß1-AR activation, but was abolished after pharmacological PKA inhibition and thus potentially attributable to increased PKA activity. NCA treatment of cardiac myocytes induced translocation of PKA and phosphatases to the myofilament compartment as shown by fractionation, immunofluorescence, and proximity ligation assays. Assessment of kinase and phosphatase activity within the myofilament fraction of cardiac myocytes after exposure to NCA revealed activation of PKA and inhibition of phosphatase activity thus explaining the increase in phosphorylation. The data suggest that the NCA-mediated effect on cardiac myocyte protein phosphorylation orchestrates alterations in the kinase/phosphatase balance.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Myocytes, Cardiac/drug effects , Oxidants/pharmacology , Phosphoprotein Phosphatases/antagonists & inhibitors , Receptors, Adrenergic, beta-1/metabolism , Signal Transduction , Acetates/pharmacology , Animals , Cattle , Cyclic AMP-Dependent Protein Kinases/metabolism , Diamide/pharmacology , Humans , Male , Mice , Myocytes, Cardiac/metabolism , Nitroso Compounds/pharmacology , Oxidation-Reduction , Phosphoprotein Phosphatases/metabolism , Phosphorylation/drug effects , Rabbits , Rats , Rats, Wistar , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL