Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Hematol J ; 2(2): 108-16, 2001.
Article in English | MEDLINE | ID: mdl-11424003

ABSTRACT

INTRODUCTION: The ex vivo expansion of hematopoietic grafts could be an important therapeutic tool for accelerating hematopoietic recovery after administration of high-dose chemotherapy regimens. The fate of the long-term repopulating cells during the ex vivo manipulation of grafts is a critical issue and will ultimately define the clinical applicability of this technology to hematopoietic transplantation. MATERIALS AND METHODS: To study the effects of a clinically applicable ex vivo expansion protocol in the proliferative potential of the most primitive human hematopoietic cells, both LTC-IC and NOD/SCID-RC assays were used to determine LTC-IC and NOD/SCID-RC contents of hematopoietic grafts, both before and after expansion (SCF, IL-3, PEG-MGDF Flt3-L and 5% AB serum), in four children with non-hematological malignancies. RESULTS: The mean percentage of CD34+ cells after expansion was 16%. The numbers of nucleated cells increased 20-fold with a mean three-fold increase in the numbers of CD34+ cells during the expansion period. The CFC content of the samples showed a mean 11-fold increase (range: 5-17) after ex vivo expansion. The primitive hematopoietic stem cell content of the expanded cell fraction evaluated by LTC-IC assays was found to be increased in two patients out of three, with maintenance of the LTC-IC frequency in the third patient. The NOD/SCID-RC potential, evaluated in five experiments from four patients using 109 mice injected 5-6 weeks earlier with human hematopoietic cells, increased from a mean percentage of 36% (range: 7-75%) before expansion, to a mean percentage of 70% (range: 37-100%) after expansion (P < 0.00001). The frequency of NOD/SCID-RC calculated with pooled data from all patients was 1/80,000 at day 0 and 1/40,000 after seven days of culture. The full phenotypic analysis of human hematopoietic cells obtained in NOD/SCID mice injected with expanded cells showed the presence of significant numbers of CD34+, CD19+ and CD15+ cells, suggesting the persistent lympho-myeloid potential of the expanded hematopoietic cells. CONCLUSION: Our results suggest that efficient expansion of NOD/SCID-RC with lympho-myeloid potential can be achieved not only in cord blood or normal marrow as previously reported, but also in hematopoietic grafts obtained from children exposed to high-dose chemotherapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Lymphopoiesis , Myelopoiesis , Neoplasms/physiopathology , Animals , Child, Preschool , Female , Fetal Blood/cytology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/pathology , Humans , Infant , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL