Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 15(9)2023 09 18.
Article in English | MEDLINE | ID: mdl-37756001

ABSTRACT

Fusarium graminearum (FG) and Fusarium verticillioides (FV) co-occur in infected plants and plant residues. In maize ears, the growth of FV is stimulated while FG is suppressed. To elucidate the role of mycotoxins in these effects, we used FG mutants with disrupted synthesis of nivalenol (NIV) and deoxynivalenol (DON) and a FV mutant with disrupted synthesis of fumonisins to monitor fungal growth in mixed cultures in vitro and in co-infected plants by real-time PCR. In autoclaved grains as well as in maize ears, the growth of FV was stimulated by FG regardless of the production of DON or NIV by the latter, whereas the growth of FG was suppressed. In autoclaved grains, fumonisin-producing FV suppressed FG more strongly than a fumonisin-nonproducing strain, indicating that fumonisins act as interference competition agents. In co-infected maize ears, FG suppression was independent of fumonisin production by FV, likely due to heterogeneous infection and a lower level of fumonisins in planta. We conclude that (i) fumonisins are agents of interference competition of FV, and (ii) trichothecenes play no role in the interaction between FG and FV. We hypothesize the following: (i) In vitro, FG stimulates the FV growth by secreting hydrolases that mobilize nutrients. In planta, suppression of plant defense by FG may additionally play a role. (ii) The biological function of fumonisin production in planta is to protect kernels shed on the ground by accumulating protective metabolites before competitors become established. Therefore, to decipher the biological function of mycotoxins, the entire life history of mycotoxin producers must be considered.


Subject(s)
Fumonisins , Mycotoxins , Zea mays
2.
Nat Commun ; 10(1): 3579, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31395863

ABSTRACT

It is thought that fungi protect themselves from predation by the production of compounds that are toxic to soil-dwelling animals. Here, we show that a nontoxic pigment, the bis-naphthopyrone aurofusarin, protects Fusarium fungi from a wide range of animal predators. We find that springtails (primitive hexapods), woodlice (crustaceans), and mealworms (insects) prefer feeding on fungi with disrupted aurofusarin synthesis, and mealworms and springtails are repelled by wheat flour amended with the fungal bis-naphthopyrones aurofusarin, viomellein, or xanthomegnin. Predation stimulates aurofusarin synthesis in several Fusarium species and viomellein synthesis in Aspergillus ochraceus. Aurofusarin displays low toxicity in mealworms, springtails, isopods, Drosophila, and insect cells, contradicting the common view that fungal defence metabolites are toxic. Our results indicate that bis-naphthopyrones are defence compounds that protect filamentous ascomycetes from predators through a mechanism that does not involve toxicity.


Subject(s)
Arthropods/drug effects , Aspergillus ochraceus/physiology , Fusarium/physiology , Naphthoquinones/pharmacology , Pigments, Biological/pharmacology , Adaptation, Physiological , Animals , Arthropods/physiology , Food Preferences/drug effects , Naphthoquinones/metabolism , Pigments, Biological/metabolism , Predatory Behavior/drug effects
3.
PLoS One ; 13(9): e0204602, 2018.
Article in English | MEDLINE | ID: mdl-30261034

ABSTRACT

BACKGROUND: Plant pathogenic fungi of the genus Fusarium infect a wide array of crops and produce numerous health-threatening mycotoxins. Recently, we found that larvae of the common pest of stored products Tenebrio molitor preferably fed on grains colonized with Fusarium proliferatum. We draw the hypothesis that the increased attractiveness of infected grains for mealworms facilitates dispersal of the fungus. In this work we examined the dissemination of F. proliferatum and further Fusarium spp. by adults of T. molitor. RESULTS: Mealworm beetle Tenebrio molitor transmitted Fusarium species F. avenaceum, F. culmorum, F. poae, and F. proliferatum to wheat grains with varying efficiency. F. proliferatum was disseminated most efficiently: 20 days after feeding on Fusarium cultures, the beetles still transmitted F. proliferatum to most grains exposed to feeding. The transmission of F. culmorum gradually declined over time and the transmission of the other Fusarium spp. ceased completely 20 d after beetles feeding of fungal cultures. Propagules of F. proliferatum and F. culmorum were traceable in beetles' feces for 20 days while no colonies of F. poae and F. avenaceum were detectable after 5 days. Because F. proliferatum was transmitted by mealworms most efficiently, this species was further investigated. Mealworm beetles T. molitor preferred feeding on grains colonized with F. proliferatum as compared to uninfected grains. Male beetles infected with F. proliferatum transmitted the fungus by copulation. CONCLUSIONS: Efficient dissemination of F. proliferatum by mealworm beetle together with the feeding preference of the beetle for grains colonized with F. proliferatum show that the chemical phenotype of the fungus responsible for the enhanced attractiveness of infected grains is subjected to positive selection. This indicates that adaptation of F. proliferatum to transmission by insects involved an alteration of insects' feeding preferences.


Subject(s)
Fusarium/pathogenicity , Tenebrio/microbiology , Animals , Copulation , DNA, Fungal/analysis , DNA, Fungal/genetics , Edible Grain/microbiology , Female , Food Microbiology , Food Preferences , Fusarium/genetics , Fusarium/growth & development , Insect Vectors/microbiology , Insect Vectors/physiology , Male , Microscopy, Electron, Scanning , Mycotoxins/analysis , Plant Diseases/microbiology , Tenebrio/physiology
4.
Ecol Evol ; 8(8): 4328-4339, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29721301

ABSTRACT

In decomposer systems, fungi show diverse phenotypic responses to volatile organic compounds of microbial origin (volatiles). The mechanisms underlying such responses and their consequences for the performance and ecological success of fungi in a multitrophic community context have rarely been tested explicitly. We used a laboratory-based approach in which we investigated a tripartite yeast-mold-insect model decomposer system to understand the possible influence of yeast-borne volatiles on the ability of a chemically defended mold fungus to resist insect damage. The volatile-exposed mold phenotype (1) did not exhibit protein kinase A-dependent morphological differentiation, (2) was more susceptible to insect foraging activity, and (3) had reduced insecticidal properties. Additionally, the volatile-exposed phenotype was strongly impaired in secondary metabolite formation and unable to activate "chemical defense" genes upon insect damage. These results suggest that volatiles can be ecologically important factors that affect the chemical-based combative abilities of fungi against insect antagonists and, consequently, the structure and dynamics of decomposer communities.

5.
Toxins (Basel) ; 9(3)2017 03 10.
Article in English | MEDLINE | ID: mdl-28287436

ABSTRACT

The efficacy of cold atmospheric pressure plasma (CAPP) with ambient air as working gas for the degradation of selected mycotoxins was studied. Deoxynivalenol, zearalenone, enniatins, fumonisin B1, and T2 toxin produced by Fusarium spp., sterigmatocystin produced by Aspergillus spp. and AAL toxin produced by Alternaria alternata were used. The kinetics of the decay of mycotoxins exposed to plasma discharge was monitored. All pure mycotoxins exposed to CAPP were degraded almost completely within 60 s. Degradation rates varied with mycotoxin structure: fumonisin B1 and structurally related AAL toxin were degraded most rapidly while sterigmatocystin exhibited the highest resistance to degradation. As compared to pure compounds, the degradation rates of mycotoxins embedded in extracts of fungal cultures on rice were reduced to a varying extent. Our results show that CAPP efficiently degrades pure mycotoxins, the degradation rates vary with mycotoxin structure, and the presence of matrix slows down yet does not prevent the degradation. CAPP appears promising for the decontamination of food commodities with mycotoxins confined to or enriched on surfaces such as cereal grains.


Subject(s)
Mycotoxins/chemistry , Plasma Gases/chemistry , Alternaria/metabolism , Aspergillus/metabolism , Decontamination/methods , Food Contamination/prevention & control , Fusarium/metabolism , Mycotoxins/biosynthesis , Oryza/chemistry , Oryza/microbiology
6.
PLoS One ; 11(9): e0162654, 2016.
Article in English | MEDLINE | ID: mdl-27648947

ABSTRACT

SCCmec elements are very important mobile genetic elements in Staphylococci that carry beta-lactam resistance genes mecA/mecC, recombinase genes and a variety of accessory genes. Twelve main types and a couple of variants have yet been described. In addition, there are also other SCC elements harbouring other markers. In order to subtype strains of methicillin-resistant S. aureus (MRSA) based on variations within their SCCmec elements, 86 markers were selected from published SCC sequences for an assay based on multiplexed primer extension reactions followed by hybridisation to the specific probes. These included mecA/mecC, fusC, regulatory genes, recombinase genes, genes from ACME and heavy metal resistance loci as well as several genes of unknown function. Hybridisation patterns for published genome or SCC sequences were theoretically predicted. For validation of the microarray based assay and for stringent hybridisation protocol optimization, real hybridization experiments with fully sequenced reference strains were performed modifying protocols until yielded the results were in concordance to the theoretical predictions. Subsequently, 226 clinical isolates from two hospitals in the city of Dresden, Germany, were characterised in detail. Beside previously described types and subtypes, a wide variety of additional SCC types or subtypes and pseudoSCC elements were observed as well as numerous composite elements. Within the study collection, 61 different such elements have been identified. Since hybridisation cannot recognise the localisation of target genes, gene duplications or inversions, this is a rather conservative estimate. Interestingly, some widespread epidemic strains engulf distinct variants with different SCCmec subtypes. Notable examples are ST239-MRSA-III, CC5-, CC22-, CC30-, and CC45-MRSA-IV or CC398-MRSA-V. Conversely, identical SCC elements were observed in different strains with SCCmec IVa being spread among the highest number of Clonal Complexes. The proposed microarray can help to distinguish isolates that appear similar or identical by other typing methods and it can be used as high-throughput screening tool for the detection of putative new SCC types or variants that warrant further investigation and sequencing. The high degree of diversity of SCC elements even within so-called strains could be helpful for epidemiological typing. It also raises the question on scale and speed of the evolution of SCC elements.


Subject(s)
DNA Transposable Elements/genetics , Genetic Variation , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Bacterial Typing Techniques/methods , Drug Resistance, Bacterial/genetics , Germany , Humans , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/physiology , Penicillin-Binding Proteins/genetics , Reproducibility of Results , Staphylococcal Infections/microbiology , Staphylococcus aureus/classification , Staphylococcus aureus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...