Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963641

ABSTRACT

Air pollution, especially particulate matter (PM), is a significant environmental pollution worldwide. Studying the chemical, environmental, and life-related cellular physical characteristics of size-fractionated PMs is important because of their different degrees of harmful effects on human respiratory tracts and organ systems, causing severe diseases. This study evaluates the chemical components of size-fractionated PMs down to PM0.1 collected during a biomass-burning episode, including elemental/organic carbon and trace elements. Single particle sizes and distributions of PM0.1, PM0.5-0.1, PM1.0-0.5, and PM2.5-1.0 were analyzed by scanning electron microscopy and Zeta sizer. Two commonly used cell lines, e.g., HeLa and Cos7 cells, and two respiratory-related cell lines including lung cancer/normal cells were utilized for cell cytotoxicity experiments, revealing the key effects of particle sizes and concentrations. A high-speed scanning ion conductance microscope explored particle-stimulated subcellular physical characteristics for all cell lines in dynamics, including surface roughness (SR) and elastic modulus (E). The statistical results of SR showed distinct features among different particle sizes and cell types while a E reduction was universally found. This work provides a comprehensive understanding of the chemical, environmental, and cellular physical characteristics of size-fractionated PMs and sheds light on the necessity of controlling small-sized PM exposures.

2.
Heliyon ; 10(4): e25884, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38390149

ABSTRACT

Background: Human health is seriously threatened by particulate matter (PM) pollution, which is a major environmental problem. A better indicator of biological responses to PM exposure than its mass alone is the PM "oxidative potential (OP)," or ability to oxidize target molecules. When reactive oxygen species (ROS) are generated in the OP in excess of the antioxidant capacity of body due to PM components such metals and organic species, it causes inflammation, deoxyribonucleic acid (DNA), proteins, and lipids damage. Method: The samples of fine particulate matter (PM2.5) are collected from the brick kiln site and the roadside in Lahore, Pakistan. The organic carbon (OC) and elemental carbon (EC) were estimated by carbon analyzer (DRI 2001A) using the thermal/optical transmittance (TOT) protocol. The water-soluble organic carbon (WSOC) concentration was determined using a total organic carbon analyzer (Shimadzu TOC-L CPN). Ion chromatography (Dionex ICS-900) with a conductivity detector was used to analyze the water-soluble anions (Cl-, NO3-, and SO42-) and cations (NH4+, Na+, K+, Mg2+, and Ca2+). Inductively coupled plasma-mass spectrometry (iCAP TQ ICP-MS, Thermo Scientific) was used to determine the concentrations of metals in the solution. The dithiothreitol (DTT) consumption rate was calculated using a spectrophotometer at a wavelength of 412 nm. Results: The mean concentrations of PM2.5 at the brick kiln site and roadside reported are 509.3 ± 32.3 µg/m3 and 467.5 ± 24.9 µg/m3, and the average OC/EC ratio is 1.9 ± 0.4 and 2.1 ± 0.1. primary organic carbon (POC) contributed more to OC than secondary organic carbon (SOC), which indicated the dominance of primary combustion sources. The anion equivalent (AE) to cation equivalent (CE) ratio indicated that PM2.5 is acidic at both sites due to the dominance of NO3- and SO42-. The DTT consumption rate normalized by PM2.5 mass (DTTm) and DTT consumption rate normalized by air volume (DTTv) of PM2.5 at the roadside samples are higher than at the brick kiln site due to the higher contribution of ionic species to the mass of PM2.5. Carbonaceous species of PM2.5 at both sampling sites are significantly correlated with DTTv of PM2.5, while metallic species behaved differently. The incremental lifetime cancer risk (ILCR) values (lung cancer) of As and Cr at both sampling sites, while the ILCR value of Cd at the roadside samples is exceeding the permissible limits for adults and children. The lifetime average daily dose (LADD) value for adults is higher than that for children, indicating that children are less vulnerable to metals. Conclusion: The concentration of PM2.5 at both sampling sites were exceeding the permissible limits of Pakistan' National Environmental Quality Standard (NEQS) and posing risk to the health of the local population. The POC and SOC contribution to OC at the brick kiln site and roadside in Lahore were 84.6%, 15.4% and 84.4%, 15.6%. POC at both sampling sites were the dominant carbon species indicating the dominance of primary combustion sources. The residence of Lahore poses the lung cancer risk due to Cr, As, and Cd at both sampling sites. The results of this study provide important data and evidence for further evaluation of the potential health risks of PM2.5 from brick kiln site and road side in Pakistan and formulation of efficient air-pollution control measures.

3.
Heliyon ; 9(5): e15936, 2023 May.
Article in English | MEDLINE | ID: mdl-37215863

ABSTRACT

A cascade impactor type sampler equipped with an inertial filter was used to collect size-segregated particles down to ultrafine particles (UFPs or PM0.1) on Batam Island in Sumatra, Indonesia, bordered by Singapore and Malaysia during a wet and the COVID-19 pandemic season in 2021. Carbonaceous species, including organic carbon (OC) and elemental carbon (EC), were analyzed by a thermal/optical carbon analyzer to determine the carbon species and their indices. The average UFP was 3.1 ± 0.9 µg/m3, which was 2-4 times lower than in other cities in Sumatra during the same season in the normal condition. The PMs mass concentration was largely affected by local emissions but long-range transportation of particles from Singapore and Malaysia was also not negligible. The air mass arrived at the sampling site passed the ocean, which introduced out clean air with a low level of PMs. The backward trajectory of the air mass and the largest fraction of OC2 and OC3 in all sizes was identified as being transported from the 2 above countries. OC is the dominant fraction in TC and the ratio of carbonaceous components indicated that origin of all particle sizes was predominantly vehicle emissions. UFPs were dominantly emitted from vehicles exhaust emission, while coarser particles (>10 µm) were influenced by the non-exhaust emissions, such as tire wear. Other particles (0.5-1.0; 1.0-2.5; and 2.5-10 µm) were slightly affected by biomass burning. The effective carbon ratio (ECR) and inhalation dose (ID) related EC indicated that finer particles or UFPs and PM0.5-1 contributed more to human health and global warming.

4.
Heliyon ; 9(3): e14261, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36938473

ABSTRACT

Many of the current atmospheric environmental problems facing Thailand are linked to air pollution that is largely derived from biomass burning. Different parts of Thailand have distinctive sources of biomass emissions that affect air quality. The main contributors to atmospheric particulate matter (PM), especially the PM2.5 fraction in Thailand, were highlighted in a recent study of PM derived from biomass burning. This review is divided into six sections. Section one is an introduction to biomass burning in Thailand. Section two covers issues related to biomass burning for each of the four main regions in Thailand, including Northern, Northeastern, Central, and Southern Thailand. In northern Thailand, forest fires and the burning of crop residues have contributed to air quality in the past decade. The northeast region is mainly affected by the burning of agricultural residues. However, the main contributor to PM in the Bangkok Metropolitan Region is motor vehicles and crop burning. In Southern Thailand, the impact of agoindustries, biomass combustion, and possible agricultural residue burning are the primary sources, and cross-border pollution is also important. The third section concerns the effect of biomass burning on human health. Finally, perspectives, new challenges, and policy recommendations are made concerning improving air quality in Thailand, e.g., forest fuel management and biomass utilization. The overall conclusions point to issues that will have a long-term impact on achieving a blue sky over Thailand through the development of coherent policies and the management of air pollution and sharing this knowledge with a broader audience.

5.
Article in English | MEDLINE | ID: mdl-36833643

ABSTRACT

The health risk of schoolchildren who were exposed to airborne fine and ultrafine particles (PM0.1) during the COVID-19 pandemic in the Jambi City (a medium-sized city in Sumatra Island), Indonesia was examined. A questionnaire survey was used to collect information on schoolchildren from selected schools and involved information on personal profiles; living conditions; daily activities and health status. Size-segregated ambient particulate matter (PM) in school environments was collected over a period of 24 h on weekdays and the weekend. The personal exposure of PM of eight selected schoolchildren from five schools was evaluated for a 12-h period during the daytime using a personal air sampler for PM0.1 particles. The schoolchildren spent their time mostly indoors (~88%), while the remaining ~12% was spent in traveling and outdoor activities. The average exposure level was 1.5~7.6 times higher than the outdoor level and it was particularly high for the PM0.1 fraction (4.8~7.6 times). Cooking was shown to be a key parameter that explains such a large increase in the exposure level. The PM0.1 had the largest total respiratory deposition doses (RDDs), particularly during light exercise. The high level of PM0.1 exposure by indoor sources potentially associated with health risks was shown to be important.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Humans , Child , Particulate Matter/analysis , Air Pollutants/analysis , Indonesia , Particle Size , Air Pollution, Indoor/analysis , Pandemics , Environmental Monitoring
6.
Article in English | MEDLINE | ID: mdl-36767750

ABSTRACT

Environmentally persistent free radicals (EPFRs) are an emerging pollutant and source of oxidative stress. Samples of PM2.5 were collected at the urban sites of Lahore in both winter and summertime of 2019. The chemical composition of PM2.5, EPRF concentration, OH radical generation, and risk assessment of EPFRs in PM2.5 were evaluated. The average concentration of PM2.5 in wintertime and summertime in Lahore is 15 and 4.6 times higher than the national environmental quality standards (NEQS) of Pakistan and WHO. The dominant components of PM2.5 are carbonaceous species. The concentration of EPFRs and reactive oxygen species (ROS), such as OH radicals, is higher in the winter than in the summertime. The secondary inorganic ions do not contribute to the generation of OH radicals, although the contribution of SO42+, NO3-, and NH4+ to the mass concentration of PM2.5 is greater in summertime. The atmospheric EPFRs are used to evaluate the exposure risk. The EPFRs in PM2.5 and cigarette smoke have shown similar toxicity to humans. In winter and summer, the residents of Lahore inhaled the amount of EPFRs equivalent to 4.0 and 0.6 cigarettes per person per day, respectively. Compared to Joaquin County, USA, the residents of Lahore are 1.8 to 14.5 times more exposed to EPFRs in summer and wintertime. The correlation analysis of atmospheric EPFRs (spin/m3) and carbonaceous species of PM2.5 indicates that coal combustion, biomass burning, and vehicle emissions are the possible sources of EPFRs in the winter and summertime. In both winter and summertime, metallic and carbonaceous species correlated well with OH radical generation, suggesting that vehicular emissions, coal combustion, and industrial emissions contributed to the OH radical generation. The study's findings provide valuable information and data for evaluating the potential health effects of EPFRs in South Asia and implementing effective air pollution control strategies.


Subject(s)
Air Pollutants , Particulate Matter , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Pakistan , Environmental Monitoring , Free Radicals , Vehicle Emissions/analysis , Seasons , Risk Assessment , Coal/analysis , China
7.
J Environ Sci (China) ; 124: 253-267, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182135

ABSTRACT

Distribution of PM0.1, PM1 and PM2.5 particle- and gas-polycyclic aromatic hydrocarbons (PAHs) during the 2019 normal, partial and strong haze periods at a background location in southern Thailand were investigated to understand the behaviors and carcinogenic risks. PM1 was the predominant component, during partial and strong haze periods, accounting for 45.1% and 52.9% of total suspended particulate matter, respectively, while during normal period the contribution was only 34.0%. PM0.1 concentrations, during the strong haze period, were approximately 2 times higher than those during the normal period. Substantially increased levels of particle-PAHs for PM0.1, PM1 and PM2.5 were observed during strong haze period, about 3, 5 and 6 times higher than those during normal period. Gas-PAH concentrations were 10 to 36 times higher than those of particle-PAHs for PM2.5. Average total Benzo[a]Pyrene Toxic Equivalency Quotients (BaP-TEQ) in PM0.1, PM1 and PM2.5 during haze periods were about 2-6 times higher than in the normal period. The total accumulated Incremental Lifetime Cancer Risks (ILCRs) in PM0.1, PM1 and PM2.5 for all the age-specific groups during the haze effected scenario were approximately 1.5 times higher than those in non-haze scenario, indicating a higher potential carcinogenic risk. These observations suggest PM0.1, PM1 and PM2.5 were the significant sources of carcinogenic aerosols and were significantly affected by transboundary haze from peatland fires. This leads to an increase in the volume of smoke aerosol, exerting a significant impact on air quality in southern Thailand, as well as many other countries in lower southeast Asia.


Subject(s)
Air Pollutants , Air Pollution , Polycyclic Aromatic Hydrocarbons , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Benzo(a)pyrene , Carcinogens/toxicity , Environmental Monitoring , Particle Size , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Smoke , Thailand
8.
Sci Rep ; 12(1): 7630, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538095

ABSTRACT

To understand the characteristics of particulate matter (PM) in the Southeast Asia region, the spatial-temporal concentrations of PM10, PM2.5 and PM1 in Malaysia (Putrajaya, Bukit Fraser and Kota Samarahan) and Thailand (Chiang Mai) were determined using the AS-LUNG V.2 Outdoor sensor. The period of measurement was over a year from 2019 to 2020. The highest concentrations of all sizes of PM in Putrajaya, Bukit Fraser and Kota Samarahan were observed in September 2019 while the highest PM10, PM2.5 and PM1 concentrations in Chiang Mai were observed between March and early April 2020 with 24 h average concentrations during haze days in ranges 83.7-216 µg m-3, 78.3-209 µg m-3 and 57.2-140 µg m-3, respectively. The average PM2.5/PM10 ratio during haze days was 0.93 ± 0.05, which was higher than the average for normal days (0.89 ± 0.13) for all sites, indicating higher PM2.5 concentrations during haze days compared to normal days. An analysis of particle deposition in the human respiratory tract showed a higher total deposition fraction value during haze days than on non-haze days. The result from this study indicated that Malaysia and Thailand are highly affected by biomass burning activity during the dry seasons and the Southwest monsoon.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Asia, Southeastern , Biomass , Environmental Monitoring , Humans , Particle Size , Particulate Matter/analysis , Seasons
9.
J Environ Sci (China) ; 113: 385-393, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34963546

ABSTRACT

Atmospheric nanoparticles (PM < 0.1 µm) are a major cause of environmental problems and also affect health risk. To control and reduce these problems, sources identification of atmospheric particulates is necessary. Combustion of bituminous coal and biomass including rubber wood, palm kernel, palm fiber, rice stubble, rice straw, maize residue, sugarcane leaves and sugarcane bagasse, which are considered as sources of air quality problems in many countries, was performed. Emissions of particle-bound chemical components including organic carbon (OC), elemental carbon (EC), water-soluble ions (NH4+, Cl-, NO3-, SO42-), elements (Ca, K, Mg, Na) and heavy metals (Cd, Cr, Ni, Pb) were investigated. The results revealed that PM < 0.1 µm from all samples was dominated by the OC component (>50%) with minor contribution from EC (3%-12%). The higher fraction of carbonaceous components was found in the particulates with smaller sizes, and lignin content may relate to concentration of pyrolyzed organic carbon (PyOC) resulting in the differences of OC/EC values. PM emitted from burning palm fiber and rice stubble showed high values of OC/EC and also high PyOC. Non-carbonaceous components such as Cl-, Cr, Ca, Cd, Ni, Na and Mg may be useful as source indicators, but they did not show any correlation with the size of PM.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols , Air Pollutants/analysis , Biomass , Carbon/analysis , China , Environmental Monitoring , Particle Size , Particulate Matter/analysis
10.
Chemosphere ; 287(Pt 4): 132309, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34601373

ABSTRACT

This study aims to determine the inorganic and carbonaceous components depending on the seasonal variation and size distribution of urban air particles in Kuala Lumpur. Different fractions of particulate matter (PM) were measured using a Nanosampler from 17 February 2017 until 27 November 2017. The water-soluble inorganic ions (WSIIs) and carbonaceous components in all samples were analysed using ion chromatography and carbon analyser thermal/optical reflectance, respectively. Total PM concentration reached its peak during the southwest (SW) season (70.99 ± 6.04 µg/m3), and the greatest accumulation were observed at PM0.5-1.0 (22%-30%, 9.55 ± 1.03 µg/m3) and PM2.5-10 (22%-25%, 10.34 ± 0.81 µg/m3). SO42-, NO3- and NH4+ were major contributors of WSIIs, and their formation was favoured mainly during SW season (80.5% of total ions). PM0.5-1.0 and PM2.5-10 exhibited the highest percentage of WSII size distribution, accounted for 28.4% and 13.5% of the total mass, respectively. The average contribution of carbonaceous species (OC + EC) to total carbonaceous concentrations were higher in PM0.5-1.0 (35.2%) and PM2.5-10 (26.6%). Ultrafine particles (PM<0.1) consistently indicated that the sources were from vehicle emission while the SW season was constantly dominated by biomass burning sources. Using the positive matrix factorization (PMF) model, secondary inorganic aerosol and biomass burning (30.3%) was known as a significant source of overall PM. As a conclusion, ratio and source apportionment indicate the mixture of biomass burning, secondary inorganic aerosols and motor vehicle contributed to the size-segregated PM and seasonal variation of inorganic and carbonaceous components of urban air particles.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , Malaysia , Particulate Matter/analysis , Seasons , Vehicle Emissions/analysis
11.
J Hazard Mater ; 425: 127986, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34902726

ABSTRACT

Ambient nanoparticles, or PM0.1 and thirteen trace elements (Al, Ba, K, Fe, Cr, Cu, Ni, Na, Mn, Mg, Ti, Pb, and Zn) were studied in Hat Yai, Thailand during the year 2018. The annual average PM0.1 mass concentration was 8.45 ± 1.93 µg/m3. The PM0.1 levels in Hat Yai were similar to those in large cities in South East Asia, such as Hanoi and North Sumatra, but lower than other cities in Thailand. The sum of thirteen trace elements was 207.83 ± 17.06 ng/m3 and was dominated by Na, Zn, K, Mg, and Al. The highest concentration of elements occurred in the pre-monsoon season followed by the dry and monsoon seasons. A principal component analysis (PCA) indicated that PM0.1 comes from motor vehicles, crustal dust, industrial and biomass burning. The PM0.1 was dominated in the pre-monsoon season, suggesting that biomass burning from the southwest direction could cause an increase in the levels of Cr, Ti, and Ni. The total cancer risk from all the carcinogenic elements was 1.98 × 10-6 in adults, indicating that the carcinogenic risk is in a tolerable risk assessment range. The increasing levels of PM0.1 during transboundary haze pollution and local source emissions are a concern.


Subject(s)
Air Pollutants , Nanoparticles , Trace Elements , Air Pollutants/analysis , Cities , Environmental Monitoring , Particulate Matter/analysis , Risk Assessment , Seasons , Thailand , Trace Elements/analysis
12.
Environ Pollut ; 272: 115940, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33189443

ABSTRACT

Atmospheric size-classified particles in sizes ranging from small to nanoparticles (PM0.1) are reported for Rangsit City in the Bangkok Metropolitan Region (BMR) of Thailand, for October 2019 (wet season) and January-February 2020 (dry season). The sampling involved the use of a PM0.1 cascade air sampler to determine the mass concentration. The PMs consisted of six stages including TSP-PM10, PM2.5-10, PM1.0-2.5, PM0.5-1.0, PM0.5-1.0 and PM0.1. Elemental carbon (EC) and organic carbon (OC) were evaluated by a carbon analyzer following the IMPROVE_TOR protocol. The average PM0.1 mass concentrations were found to be 13.47 ± 0.79 (wet season) and 18.88 ± 3.99 (dry season) µg/m3, respectively. The average OC/EC ratio for the rainy season was lower than that in the dry season. The char-EC/soot-EC ratios were consistently below 1 for the PM0.1 fraction in both seasons indicating that vehicular traffic appeared to be the main emission source. However, the influence of open biomass burning on fine and coarse PM particles on local air pollution was found to be an important issue during the wet season. In addition, long-range transport from other countries may also contribute to the carbon content in the Bangkok Metropolitan Region (BMR) atmosphere during the dry season. The higher secondary organic carbon to organic carbon (SOC/OC) ratio in the dry season is indicative of the contribution of secondary sources to the formation of PM, especially finer particles. A strong correlation between OC and EC in nanoparticles was found, indicating that they are derived from sources of constant emission, likely the diesel engines. Conversely, the OC and EC correlation for other size-specific PMs decreased during the dry season, indicating that these emission sources were more varied.


Subject(s)
Air Pollutants , Nanoparticles , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , Cities , Environmental Monitoring , Particle Size , Particulate Matter/analysis , Seasons , Thailand
13.
J Environ Sci (China) ; 97: 149-161, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32933730

ABSTRACT

Transboundary and domestic aerosol transport during 2018-2019 affecting Bangkok air quality has been investigated. Physicochemical characteristics of size-segregated ambient particles down to nano-particles collected during 2017 non-haze and 2018-2019 haze periods were analyzed. The average PM2.5 concentrations at KU and KMUTNB sites in Bangkok, Thailand during the haze periods were about 4 times higher than in non-haze periods. The highest average organic carbon and elemental carbon concentrations were 4.6 ± 2.1 µg/m3 and 1.0 ± 0.4 µg/m3, respectively, in PM0.5-1.0 range at KU site. The values of OC/EC and char-EC/soot-EC ratios in accumulation mode particles suggested the significant influence of biomass burning, while the nuclei and coarse mode particles were from mixed sources. PAH concentrations during 2018-2019 haze period at KU and KMUTNB were 3.4 ± 0.9 ng/m3 and 1.8 ± 0.2 ng/m3, respectively. The PAH diagnostic ratio of PM2.5 also suggested the main contributions were from biomass combustion. This is supported by the 48-hrs backward trajectory simulation. The higher PM2.5 concentrations during 2018-2019 haze period are also associated with the meteorological conditions that induce thermal inversions and weak winds in the morning and evening. Average values of benzo(a)pyrene toxic equivalency quotient during haze period were about 3-6 times higher than during non-haze period. This should raise a concern of potential human health risk in Bangkok and vicinity exposing to fine and ultrafine particulate matters in addition to regular exposure to traffic emission.


Subject(s)
Air Pollutants/analysis , Air Pollution , Aerosols/analysis , Biomass , Carbon/analysis , Environmental Monitoring , Humans , Particle Size , Particulate Matter/analysis , Seasons , Thailand
14.
Environ Pollut ; 260: 114031, 2020 May.
Article in English | MEDLINE | ID: mdl-32014745

ABSTRACT

In this study, size-fractionated particulate matters (PM) down to ultrafine (PM0.1) particles were collected using a cascade air sampler with a PM0.1 stage, in Hat Yai city, Songkhla province, southern Thailand during the year 2018. The particle-bound carbonaceous aerosols (CA) as elemental carbon (EC) and organic carbon (OC) were quantified with the thermal/optical reflectance method following the IMPROVE_TOR protocol. The concentrations of different temperature carbon fractions (OC1-OC4, EC1-EC3 and PyO) in the size-fractionated PM were evaluated to discern OC and EC correlations as well as those between char-EC and soot-EC. The results showed that biomass burning, motor vehicle, and secondary organic aerosols (SOC) all contributed to the size-fractionated PM. The OC/EC ratios ranged from 2.90 to 4.30 over the year, with the ratios of PM2.5-10 being the highest, except during the open biomass burning period. The concentration of CA was found to increase during the pre-monsoon season and had its peak value in the PM0.5-1.0 fraction. The long-range transport of PMs from Indonesia, southwest of Thailand toward southern Thailand became more obvious during the pre-monsoon season. Transported plumes from biomass burning in Indonesia may increase the concentration of OC and EC both in the fine (PM0.5-1.0 and PM1.0-2.5) and coarse (PM2.5-10 and PM>10) fractions. The OC fraction in PM0.1 was also shown to be significantly affected by the transported plumes during the pre-monsoon season. Good OC and EC correlations (R2 = 0.824-0.915) in the fine particle fractions indicated that they had common sources such as fossil fuel combustion. However, the lower and moderate correlations (R2 = 0.093-0.678) among the coarser particles suggesting that they have a more complex pattern of emission sources during the dry and monsoon seasons. This indicates the importance of focusing emission control strategies on different PM particle sizes in southern Thailand.


Subject(s)
Air Pollutants , Environmental Monitoring , Particulate Matter , Aerosols , Biomass , Carbon , Cities , Indonesia , Particle Size , Seasons , Thailand
15.
Environ Pollut ; 247: 238-247, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30685664

ABSTRACT

Size-segregated ambient particles down to particles smaller than 0.1 µm (PM0.1) were collected during the year 2014-2015 using cascade air samplers with a PM0.1 stage, at two cities in Thailand, Bangkok and Chiang Mai. Their characteristics and seasonal behavior were evaluated based on the thermal/optical reflectance (IMPROVE_TOR) method. Diagnostic indices for their emission sources and the black carbon (BC) concentration were assessed using an aethalometer and related to the monthly emission inventory (EI) of particle-bound BC and organic carbon (OC) in order to investigate the contribution of agricultural activities and forest fires as well as agro-industries in Thailand. Monthly provincial EIs were evaluated based on the number of agricultural crops produced corresponding to field residue burning and the use of residues as fuel in agro-industries, and also on the number of hot spots from satellite images corresponding to the areas burned by forest fires. The ratio of char-EC/soot-EC describing the relative influence of biomass combustion to diesel emission was found to be in agreement with the EI of BC from biomass burning in the size range <1 µm. This was especially true for PM0.1, which usually tends to be indicative of diesel exhaust particles, and was shown to be very sensitive to the EI of biomass burning. In Chiang Mai, the northern part of Thailand, the forest fires located upwind of the monitoring site were found to be the largest contributor while the carbon behavior at the site in Bangkok was better accounted for by the EI of provinces in central Thailand including Bangkok and its surrounding provinces, where the burning of crop residues and the cultivation of sugarcane for sugar production are significant factors. This suggests that the influence of transportation of polluted air masses is important on a multi-provincial scale (100-200 km) in Thailand.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Particulate Matter/analysis , Wildfires , Agriculture , Biomass , Carbon/analysis , Cities , Crops, Agricultural , Fires , Particle Size , Satellite Imagery , Soot , Thailand , Vehicle Emissions
16.
J Environ Sci (China) ; 52: 85-97, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28254062

ABSTRACT

Annual and monthly-based emission inventories in northern, central and north-eastern provinces in Thailand, where agriculture and related agro-industries are very intensive, were estimated to evaluate the contribution of agricultural activity, including crop residue burning, forest fires and related agro-industries on air quality monitored in corresponding provinces. The monthly-based emission inventories of air pollutants, or, particulate matter (PM), NOx and SO2, for various agricultural crops were estimated based on information on the level of production of typical crops: rice, corn, sugarcane, cassava, soybeans and potatoes using emission factors and other parameters related to country-specific values taking into account crop type and the local residue burning period. The estimated monthly emission inventory was compared with air monitoring data obtained at monitoring stations operated by the Pollution Control Department, Thailand (PCD) for validating the estimated emission inventory. The agro-industry that has the greatest impact on the regions being evaluated, is the sugar processing industry, which uses sugarcane as a raw material and its residue as fuel for the boiler. The backward trajectory analysis of the air mass arriving at the PCD station was calculated to confirm this influence. For the provinces being evaluated which are located in the upper northern, lower northern and northeast in Thailand, agricultural activities and forest fires were shown to be closely correlated to the ambient PM concentration while their contribution to the production of gaseous pollutants is much less.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Agriculture/statistics & numerical data , Fires/statistics & numerical data , Forests , Particulate Matter/analysis , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...