Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 122(50): 9626-9636, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30450901

ABSTRACT

The solid-state structures of seven solvates of C60 (C60·4tetrachloroethylene, C60·2tetrachloroethylene, C60·3benzene, C60· n-pentane, C60·diethyl ether, C60·chlorobenzene, and C60·benzene·dichloromethane) were determined by single-crystal X-ray diffraction at low temperature. At 90 K, the fullerene and solvate components are generally well-ordered and do not show the orientational disorder that plagues similar structures determined at room temperature. Interactions between the solvate molecules and the fullerene and between adjacent C60 molecules were examined and analyzed. Van der Waals and weak charge-transfer interactions are important to help to organize the individual components in these structures. The weak Lewis acid behavior of C60, such as when it cocrystallizes with diethyl ether or chlorinated solvents, is apparent. In addition, π-stacking interactions are prevalent. The solvates of C60 reported here were frequently obtained from attempts to cocrystallize C60 with another chemical compound. Although the desired cocrystals were never formed, the unincorporated molecules influenced solvate formation.

2.
J Am Chem Soc ; 134(26): 10885-93, 2012 Jul 04.
Article in English | MEDLINE | ID: mdl-22506844

ABSTRACT

The remarkable, vapor-induced transformation of the yellow polymorphs of [(C(6)H(11)NC)(2)Au(I)](AsF(6)) and [(C(6)H(11)NC)(2)Au(I)](PF(6)) into the colorless forms are reported along with related studies of the crystallization of these polymorphs. Although the interconversion of these polymorphs is produced by vapor exposure, molecules of the vapor are not incorporated into the crystals. Thus, our observations may have broad implications regarding the formation and persistence of other crystal polymorphs where issues of stability and reproducibility of formation exist. Crystallographic studies show that the colorless polymorphs, which display blue luminescence, are isostructural and consist of linear chains of gold(I) cations that self-associate through aurophilic interactions. Significantly, the yellow polymorph of [(C(6)H(11)NC)(2)Au(I)](AsF(6)) is not isostructural with the yellow polymorph of [(C(6)H(11)NC)(2)Au(I)](PF(6)). Both yellow polymorphs exhibit green emission and have the gold cations arranged into somewhat bent chains with significantly closer Au···Au separations than are seen in the colorless counterparts. Luminescence differences in these polymorphs clearly enhance the ability to detect and monitor their phase stability.

3.
J Inorg Biochem ; 105(9): 1161-72, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21708101

ABSTRACT

Prochelators are agents that have little affinity for metal ions until they undergo a chemical conversion. Three new aryl boronate prochelators are presented that are responsive to hydrogen peroxide to provide hexadentate ligands for chelating metal ions. TRENBSIM (tris[(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)-2-aminoethyl]amine), TRENBSAM (tris[(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoyl)-2-aminoethyl]amine), and TB (tris[(2-boronic acid-benzyl)2-aminoethyl]amine) convert to TRENSIM (tris[(salicylideneamino)ethyl]amine), TRENSAM (tris[(2-hydroxybenzoyl)-2-aminoethyl]amine), and TS (tris[2-hydroxybenzyl)2-aminoethyl]amine), respectively. The prochelators were characterized by (11)B NMR, and the structures of TRENBSAM, TRENBSIM, and the Fe(III) complex of TS were determined by X-ray crystallography. Of the three prochelator/chelator pairs, TB/TS was identified as the most promising for biological applications, as they prevent iron and copper-induced hydroxyl radical generation in an in vitro assay. TB has negligible interactions with metal ions, whereas TS has apparent binding constants (log K') at pH 7.4 of 15.87 for Cu(II), 9.67 Zn(II) and 14.42 for Fe(III). Up to 1 mMTB was nontoxic to retinal pigment epithelial cells, whereas 10 µM TS induced cell death. TS protected cells against H(2)O(2)-induced death, but only within a 1-10 µM range. TB, on the other hand, had a much broader window of protection, suggesting that it may be a useful agent for preventing metal-promoted oxidative damage.


Subject(s)
Antioxidants/chemical synthesis , Boron Compounds/chemical synthesis , Chelating Agents/chemical synthesis , Epithelial Cells/drug effects , Iron/metabolism , Prodrugs/chemical synthesis , Amines/chemistry , Antioxidants/pharmacology , Boron Compounds/pharmacology , Cell Death/drug effects , Cell Survival/drug effects , Chelating Agents/pharmacology , Copper/chemistry , Crystallography, X-Ray , Epithelial Cells/cytology , Epithelial Cells/metabolism , Hydrogen Peroxide/adverse effects , Hydrogen Peroxide/pharmacology , Hydroxyl Radical , Iron/chemistry , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Prodrugs/pharmacology , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Spectrophotometry, Ultraviolet
4.
Nature ; 468(7323): 567-71, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-21107427

ABSTRACT

Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related death worldwide, with an overall 5-year survival rate of only 10-15%. Deregulation of the Ras pathway is a frequent hallmark of NSCLC, often through mutations that directly activate Kras. p53 is also frequently inactivated in NSCLC and, because oncogenic Ras can be a potent trigger of p53 (ref. 3), it seems likely that oncogenic Ras signalling has a major and persistent role in driving the selection against p53. Hence, pharmacological restoration of p53 is an appealing therapeutic strategy for treating this disease. Here we model the probable therapeutic impact of p53 restoration in a spontaneously evolving mouse model of NSCLC initiated by sporadic oncogenic activation of endogenous Kras. Surprisingly, p53 restoration failed to induce significant regression of established tumours, although it did result in a significant decrease in the relative proportion of high-grade tumours. This is due to selective activation of p53 only in the more aggressive tumour cells within each tumour. Such selective activation of p53 correlates with marked upregulation in Ras signal intensity and induction of the oncogenic signalling sensor p19(ARF)( )(ref. 6). Our data indicate that p53-mediated tumour suppression is triggered only when oncogenic Ras signal flux exceeds a critical threshold. Importantly, the failure of low-level oncogenic Kras to engage p53 reveals inherent limits in the capacity of p53 to restrain early tumour evolution and in the efficacy of therapeutic p53 restoration to eradicate cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung/physiopathology , Gene Expression Regulation, Neoplastic , Lung Neoplasms/physiopathology , Tumor Suppressor Protein p53/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , Disease Models, Animal , Lung Neoplasms/metabolism , Mice , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Suppressor Protein p53/genetics , ras Proteins/metabolism
6.
Inorg Chem ; 47(8): 3442-51, 2008 Apr 21.
Article in English | MEDLINE | ID: mdl-18345626

ABSTRACT

Depending upon the crystallization conditions, [Au{C(NHMe) 2} 2](AsF 6) forms colorless crystals that display a blue or green luminescence. The difference involves the type of solvate molecule that is incorporated into the crystal and the structure of the chains of cations that are formed upon crystallization. The crystallographically determined structures of blue-glowing [Au{C(NHMe) 2} 2](AsF 6).0.5(benzene), blue-glowing [Au{C(NHMe) 2} 2](AsF 6).0.5(acetone), green-glowing [Au{C(NHMe) 2} 2](AsF 6).0.5(chlorobenzene), and blue-glowing, solvate-free [Au{C(NHMe) 2} 2](EF 6), E = P, As, Sb are reported. All pack with the cations forming extended columns, which may be linear or bent, but all show significant aurophilic interactions. The blue-glowing crystals have ordered stacks of cations with some variation in structural arrangement whereas the green-glowing crystals have disorder in their stacking pattern. Although there is extensive hydrogen bonding between the cations and anions in all structures, in the solvated crystals, the solvate molecules occupy channels but make no hydrogen-bonded contacts. The emission spectra of these new salts taken at 298 and 77 K are reported.

7.
Inorg Chem ; 47(3): 1087-95, 2008 Feb 04.
Article in English | MEDLINE | ID: mdl-18163613

ABSTRACT

Cysteinyldopas are naturally occurring conjugates of cysteine and dopa (3,4-dihydroxy-l-phenylalanine) that are precursors to red pheomelanin pigments. Metal ions are known to influence pheomelanogenesis in vitro and may be regulatory factors in vivo. Cydo (3-[(2-amino-ethyl)sulfanyl]-4,6-di-tert-butylbenzene-1,2-diol) and CarboxyCydo (2-amino-3-(4,6-di-tert-butyl-2,3-dihydroxyphenylsulfanyl)-propionic acid) are model compounds of cysteinyldopa that retain its metal-binding functionalities but cannot polymerize due to the presence of blocking tert-butyl groups. Cydo reacts readily with zinc(II) acetate or nickel(II) acetate to form a cyclized 1,4-benzothiazine (zine) intermediate that undergoes ring contraction to form benzothiazole (zole) unless it is stabilized by coordination to a metal ion. The crystal structure of [Ni(zine)2] is reported. The acetate counteranion is required for the zinc-promoted reactivity, as neither zinc(II) sulfate nor zinc(II) chloride alone promotes the transformation. The counterion is less important for redox-active copper and iron, which both readily promote the oxidation of Cydo to zine and zole species; Cu(II) complexes of both zine and zole have been characterized by X-ray crystallography. In the case of CarboxyCydo, a 3-carboxy-1,4-benzothiazine intermediate decarboxylates to form [Cu(zine)2] under basic conditions, but in the absence of base forms a mixture of products that includes the carboxylated dimer 2,2'-bibenzothiazine (bi-zine). These products are consistent with species implicated in the pheomelanogenesis biosynthetic pathway and emphasize how metal ions, their counteranions, and reaction conditions can alter pheomelanin product distribution.


Subject(s)
Cysteinyldopa/chemistry , Metals/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet
8.
Dalton Trans ; (43): 5031-42, 2007 Nov 21.
Article in English | MEDLINE | ID: mdl-17992288

ABSTRACT

Several new analogs of salicylaldehyde isonicotinoyl hydrazone (SIH) and salicylaldehyde benzoyl hydrazone (SBH) that contain an aryl boronic ester (BSIH, BSBH) or acid (BASIH) in place of an aryl hydroxide have been synthesized and characterized as masked metal ion chelators. These pro-chelators show negligible interaction with iron(III), although the boronic acid versions exhibit some interaction with copper(II), zinc(II) and nickel(II). Hydrogen peroxide oxidizes the aryl boronate to phenol, thus converting the pro-chelators to tridentate ligands with high affinity metal binding properties. An X-ray crystal structure of a bis-ligated iron(III) complex, [Fe(SBH(m-OMe)(3))(2)]NO(3), confirms the meridonal binding mode of these ligands. Modifications of the aroyl ring of the chelators tune their iron affinity, whereas modifications on the boron-containing ring of the pro-chelators attenuate their reaction rates with hydrogen peroxide. Thus, the methoxy derivative pro-chelator (p-OMe)BASIH reacts with hydrogen peroxide nearly 5 times faster than the chloro derivative (m-Cl)BASIH. Both the rate of pro-chelator to chelator conversion as well as the metal binding affinity of the chelator influence the overall ability of these molecules to inhibit hydroxyl radical formation catalyzed by iron or copper in the presence of hydrogen peroxide and ascorbic acid. This pro-chelator strategy has the potential to improve the efficacy of medicinal chelators for inhibiting metal-promoted oxidative stress.


Subject(s)
Boron Compounds/chemistry , Chelating Agents/chemistry , Hydrogen Peroxide/chemistry , Metals/chemistry , Oxidative Stress , Esters , Humans , Kinetics , Models, Molecular , Spectrum Analysis/methods
9.
J Am Chem Soc ; 128(38): 12424-5, 2006 Sep 27.
Article in English | MEDLINE | ID: mdl-16984186

ABSTRACT

The synthesis and structural characterization of a new pro-chelating agent, isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzylidene]-hydrazide (BSIH), are presented. BSIH only weakly interacts with iron unless hydrogen peroxide (H2O2) is present to remove the boronic ester protecting group to reveal a phenol that is a key metal-binding group of tridentate salicylaldehyde isonicotinoyl hydrazone (SIH). BSIH prevents deoxyribose degradation caused by hydroxyl radicals that are generated from H2O2 and redox-active iron by sequestering Fe3+ and preventing iron-promoted hydroxyl radical formation. The rate-determining step for iron sequestration is conversion of BSIH to SIH, followed by rapid Fe3+ complexation. The pro-chelate approach of BSIH represents a promising strategy for chelating a specific pool of detrimental metal ions without disturbing healthy metal ion distribution.


Subject(s)
Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Iron Chelating Agents/chemistry , Iron/chemistry , Prodrugs/chemistry , Aldehydes/chemistry , Boronic Acids/chemistry , Crystallography, X-Ray , Deoxyribose/chemistry , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Hydrazones/chemistry , Hydroxyl Radical/antagonists & inhibitors , Iron/antagonists & inhibitors , Iron Chelating Agents/chemical synthesis , Isonicotinic Acids/chemistry , Oxidation-Reduction , Prodrugs/chemical synthesis , Spectrophotometry, Ultraviolet
10.
Inorg Chem ; 45(16): 6102-4, 2006 Aug 07.
Article in English | MEDLINE | ID: mdl-16878910

ABSTRACT

A new cysteinyldopa model ligand Cydo {3-[(2-aminoethyl)sulfanyl]-4,6-di-tert-butylbenzene-1,2-diol} was prepared and its reactivity with Cu(II) explored. Under anaerobic conditions, tetranuclear [Cu4(Cydo)4] is isolated, but in the presence of O2, a benzothiazine intermediate accumulates that is trapped as the Cu(II) complex [Cu(zine)2]. Under slightly different reaction conditions, the benzothiazine further oxidizes to benzothiazole (zole). All three compounds were characterized by X-ray crystallography, and the reactions were monitored spectrophotometrically.


Subject(s)
Benzene Derivatives/chemistry , Copper/chemistry , Cysteinyldopa/analogs & derivatives , Melanins/chemistry , Thiazines/chemistry , Benzene Derivatives/chemical synthesis , Cysteinyldopa/chemical synthesis , Ligands , Thiazines/chemical synthesis
11.
J Am Chem Soc ; 127(31): 10838-9, 2005 Aug 10.
Article in English | MEDLINE | ID: mdl-16076183

ABSTRACT

Crystallographic examination of [mu3-S(AuCNC7H13)3](SbF6) shows that it undergoes a reversible phase change from orthorhombic to monoclinic upon cooling. At 190 K, the structure shows that two cations self-associate to form a pseudo-octahedral array of six gold atoms connected by both intra- and interionic aurophilic interactions. On cooling, the clusters become less symmetric, and in one, the interionic Au...Au separations increase, while they decrease in the second cluster. The luminescence of crystalline [mu3-S(AuCNC7H13)3](SbF6) shows corresponding changes in emission, with two emissions of similar lifetimes but with different excitations at 77 K, but only a single emission at 298 K. In contrast, [mu3-S(AuCNC6H11)3](PF6), which has a similar structure to that of the high-temperature form of [mu3-S(AuCNC7H13)3](SbF6), does not undergo a phase change or change in its luminescence upon cooling.

SELECTION OF CITATIONS
SEARCH DETAIL