Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Expr Purif ; 215: 106414, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072143

ABSTRACT

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the causative pathogen of coronavirus disease-19 (COVID-19). The COVID-19 pandemic has resulted in millions of deaths and widespread socio-economic damage worldwide. Therefore, numerous studies have been conducted to identify effective measures to control the spreading of the virus. Among various potential targets, the 3 chymotrypsin-like protease (3CLpro), also known as Mpro, stands out as the key protease of SARS-CoV-2, playing an essential role in virus replication and assembly, is the most prospective. In this study, we modified the commercial vector, pETM33-Nsp5-Mpro (plasmid # 156475, Addgene, USA), by inserting an autocleavage site (AVLQ) of 3CLpro and 6 × His-tag encoding sequences before and after the Nsp5-Mpro sequence, respectively. This modification enabled the expression of 3CLpro as an authentic N terminal protease (au3CLpro), which was purified to electrophoretic homogeneity by a single-step chromatography using two tandem Glutathione- and Ni-Sepharose columns. The enzyme au3CLpro demonstrated significantly higher activity (3169 RFU/min/µg protein) and catalytic efficiency (Kcat/Km of 0.007 µM-1.s-1) than that of the 3CLpro (com3CLpro) expressed from the commercial vector (pETM33-Nsp5-Mpro) with specific activity 889 RFU/min/µg and Kcat/Km of 0.0015 µM-1.s-1, respectively. Optimal conditions for au3CLpro activity included a 50 mM Tris-HCl buffer at pH 7, containing 150 mM NaCl and 0.1 mg/ml BSA at 37 °C.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Chymases , Pandemics , Prospective Studies , Peptide Hydrolases/metabolism , Protease Inhibitors , Antiviral Agents/therapeutic use , Molecular Docking Simulation
2.
Environ Sci Pollut Res Int ; 29(28): 41875-41885, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33834338

ABSTRACT

Covid-19 lockdowns have improved the ambient air quality across the world via reduced air pollutant levels. This article aims to investigate the effect of the partial lockdown on the main ambient air pollutants and their elemental concentrations bound to PM2.5 in Hanoi. In addition to the PM2.5 samples collected at three urban sites in Hanoi, the daily PM2.5, NO2, O3, and SO2 levels were collected from the automatic ambient air quality monitoring station at Nguyen Van Cu street to analyze the pollution level before (March 10th-March 31st) and during the partial lockdown (April 1st-April 22nd) with "current" data obtained in 2020 and "historical" data obtained in 2014, 2016, and 2017. The results showed that NO2, PM2.5, O3, and SO2 concentrations obtained from the automatic ambient air quality monitoring station were reduced by 75.8, 55.9, 21.4, and 60.7%, respectively, compared with historical data. Besides, the concentration of PM2.5 at sampling sites declined by 41.8% during the partial lockdown. Furthermore, there was a drastic negative relationship between the boundary layer height (BLH) and the daily mean PM2.5 in Hanoi. The concentrations of Cd, Se, As, Sr, Ba, Cu, Mn, Pb, K, Zn, Ca, Al, and Mg during the partial lockdown were lower than those before the partial lockdown. The results of enrichment factor (EF) values and principal component analysis (PCA) concluded that trace elements in PM2.5 before the partial lockdown were more affected by industrial activities than those during the partial lockdown.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Trace Elements , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis , SARS-CoV-2 , Trace Elements/analysis , Vietnam
3.
Bull Environ Contam Toxicol ; 102(2): 287-296, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30547219

ABSTRACT

Concentrations of PCDD/Fs, dioxin-like PCBs (dl-PCBs), PeCB and HCB were determined in flue gas, fly ash and bottom ash samples collected from brick production, steel production, and zinc production plants, an industrial waste incinerator and a medical waste incinerator in northern Vietnam to understand the contamination levels, accumulation patterns and extent of emission. Total TEQs concentrations of PCDD/Fs and dl-PCBs in flue gas and ash samples from these industrial plants ranged from 0.304 to 50.55 pg/Nm3 and 1.43 to 440 pg/g, respectively. PeCB and HCB residues in flue gas samples ranged from 0.839 to 46.59 ng/Nm3 and 1.16 to 60.5 ng/Nm3, respectively. The emission factors of 4.8-740 ngTEQs/tonne for PCDD/Fs and dl-PCBs, 67.12-240.7 µg/ton for PeCB and 11.64-889.3 µg/ton for HCB were obtained in flue gas samples. This is among the first reports on the emission factor of PCDD/Fs, dl-PCBs, PeCB, HCB in brick production, zinc production and waste incineration in Vietnam.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Industrial Waste/analysis , Coal Ash/chemistry , Gases/chemistry , Steel , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...